
LECTURE 5: Fluid jets

We consider here the form and stability of fluid jets falling under the influence of gravity.

5.1 The shape of a falling fluid jet

Consider a circular orifice of radius a ejecting a flux Q of fluid of density ρ and kinematic viscosity
ν (Figure 1). The resulting jet is shot downwards, and accelerates under the influence of gravity
−gẑ. We assume that the jet Reynolds number Re = Q/(aν) is sufficiently high that the influence
of viscosity is negligible; furthermore, we assume that the jet speed is independent of radius, and
so adequately described by U(z). We proceed by deducing the shape r(z) and speed U(z) of the
evolving jet.

Applying Bernoulli’s Theorem at points A and B:
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The local curvature of slender threads may be expressed in terms of the two principal radii of
curvature, R1 and R2:
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Thus, the fluid pressures within the jet at points A and B may be simply related to that of the
ambient, P0:
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Substituting into (1) thus yields
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from which one finds
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where we define the dimensionless groups:
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Figure 1: A fluid jet extruded from an orifice of radius a accelerates under the influence of gravity.
Its shape is influenced both by the gravitational accelerationg and the surface tension σ.

Now flux conservation requires that

Q = 2π

∫ r

0
U(z)r(z) dr = πa2 U0 = π r2 U(z) (7)

from which one obtains
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This may be solved algebraically to yield the thread shape r(z)/a, then this result substituted
into (4) to deduce the velocity profile U(z). In the limit of We→∞, one obtains
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5.2 The Plateau-Rayleigh Instability

We here summarize the work of Plateau and Rayleigh on the instability of cylindrical fluid jets
bound by surface tension. It is precisely this Rayleigh-Plateau instability that is responsible for
the pinch-off of thin water jets emerging from kitchen taps (see Figure 2).
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Figure 2: The capillary-driven instability of a water thread falling under the influence of gravity.
The initial jet diameter is approximately 3 mm.

The equilibrium base state consists of an infinitely long quiescent cylindrical inviscid fluid column
of radius R0, density ρ and surface tension σ (Figure 3). The influence of gravity is neglected. The
pressure p0 is constant inside the column and may be calculated by balancing the normal stresses
with surface tension at the boundary. Assuming zero external pressure yields

p0 = σ∇ · n ⇒ p0 =
σ

R0
. (9)

We consider the evolution of infinitesimal varicose perturbations on the interface, which enables
us to linearize the governing equations. The perturbed columnar surface takes the form:

R̃ = R0 + εeωt+ikz , (10)

where the perturbation amplitude ε � R0, ω is the growth rate of the instability and k is the
wave number of the disturbance in the z-direction. The corresponding wavelength of the varicose
perturbations is necessarily 2π/k. We denote by ũr the radial component of the perturbation
velocity, ũz the axial component, and p̃ the perturbation pressure. Substituting these perturbation
fields into the Navier-Stokes equations and retaining terms only to order ε yields:
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The linearized continuity equation becomes:

∂ũr

∂r
+

ũr

r
+ ũz = 0 . (13)
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Figure 3: A cylindrical column of initial radius R0 is comprised of fluid of inviscid fluid of density
ρ and bound by surface tension σ.

We anticipate that the disturbances in velocity and pressure will have the same form as the surface
disturbance (10), and so write the perturbation velocities and pressure as:

ũr = R(r)eωt+ikz , ũz = Z(r)eωt+ikz and p̃ = P (r)eωt+ikz . (14)

Substituting (14) into equations (11) through (13) yields the linearized equations governing the
perturbation fields:

Momentum equations:

ωR = −1
ρ

dP

dr
(15)

ωZ = − ik

ρ
P (16)

Continuity:
dR

dr
+

R

r
+ ikZ = 0 . (17)

Eliminating Z(r) and P (r) yields a differential equation for R(r):

r2 d2R

dr2
+ r

dR

dr
−

(
1 + (kr)2

)
R = 0 . (18)

This corresponds to modified Bessel Equation of order 1, whose solutions may be written in terms
of the modified Bessel functions of the first and second kind, respectively, I1(kr) and K1(kr). We
note that K1(kr)→∞ as r → 0; therefore, the well-behavedness of our solution requires that R(r)
take the form

R(r) = CI1 (kr) , (19)
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Figure 4: The dependence of the growth rate ω on the wavenumber k for the Rayleigh-Plateau
instability.

where C is an as yet unspecified constant to be determined later by application of appropriate
boundary conditions.

The pressure may be obtained from (19) and (15), and by using the Bessel function identity
I ′0(ξ) = I1(ξ):

P (r) = −ωρC

k
I0(kr) . (20)

We proceed by applying appropriate boundary conditions. The first is the kinematic condition
on the free surface:

∂R̃

∂t
= ũ · n ' ũr . (21)

Substitution of (19) into this condition yields

C =
εω

I1 (kR0)
. (22)

Second, we require a normal stress balance on the free surface:

p0 + p̃ = σ∇ · n . (23)

We write the curvature as σ∇·n =
(

1
R1

+ 1
R2

)
, where R1 and R2 are the principal radii of curvature

of the jet surface:
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Substitution of (24) and (25) into equation (23) yields:
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Figure 5: The field of stationary capillary waves excited on the base of a water jet impinging on a
horizontal water reservoir. The grid at right is millimetric.

Cancellation via (9) yields the equation for p̃ accurate to order ε:

p̃ = − εσ

R2
0

(
1− k2R2

0

)
eωt+ikz . (27)

Combining (20), (22) and (27) yields the dispersion relation, that indicates the dependence of the
growth rate ω on the wavenumber k:

ω2 = σ
ρR3

0
kR0

I1(kR0)
I0(kR0)

(
1− k2R2

0

)
. (28)

We first note that unstable modes are only possible when

kR0 < 1 (29)

The column is thus unstable to disturbances whose wavelengths exceed the circumference of the
cylinder. A plot for the dispersion relation is shown in Figure 4.
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The fastest growing mode occurs for kR0 = 0.697, i.e. when the wavelength of the disturbance is

λmax ' 9.02R0 . (30)

By inverting the maximum growth rate ωmax one may estimate the characteristic break up time:

tbreakup ' 2.91

√
ρR3

0

σ
. (31)

A water jet of diameter 1cm has a characteristic break-up time of about 1/8 s, which is consistent
with casual observation of jet break-up in a kitchen sink.

When a vertical water jet impinges on a horizontal reservoir of water, a field of standing waves may
be excited on the base of the jet (see Figure 5). The wavelength is determined by the requirement
that the wave speed correspond to the local jet speed: U = −ω/k. Using our dispersion relation
(28) thus yields

U2 =
ω2

k2
=

σ

ρkR2
0

I1 (kR0)
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0

)
. (32)

Provided the jet speed U is known, this equation may be solved in order to deduce the wavelength
of the waves that will travel at U and so appear to be stationary in the lab frame. For jets falling
from a nozzle, the result (4) may be used to deduce the local jet speed.

5.3 Fluid Pipes (see http://www-math.mit.edu/ bush/pipes.html)

The following system may be readily observed in a kitchen sink. When the volume flux exiting the
tap is such that the falling stream has a diameter of 2-3mm, obstructing the stream with a finger
at a distance of several centimeters from the tap gives rise to a stationary field of varicose capillary
waves upstream of the finger. If the finger is dipped in liquid detergent (soap) before insertion
into the stream, the capillary waves begin at some critical distance above the finger, below which
the stream is cylindrical. Closer inspection reveals that the surface of the jet’s cylindrical base is
quiescent.

An analogous phenomenon arises when a vertical fluid jet impinges on a deep water reservoir
(Figures 5 and 6). When the reservoir is contaminated by surfactant, the surface tension of the
reservoir is diminished relative to that of the jet. The associated surface tension gradient draws
surfactant a finite distance up the jet, prompting two salient alterations in the jet surface. First,
the surfactant suppresses surface waves, so that the base of the jet surface assumes a cylindrical
form (Figure 6). Second, the jet surface at its base becomes stagnant: the Marangoni stresses
associated with the surfactant gradient are balanced by the viscous stresses generated within the
jet. The quiescence of the jet surface may be simply demonstrated by sprinkling a small amount
of talc or lycopodium powder onto the jet. The fluid jet thus enters a contaminated reservoir as if
through a rigid pipe.

A detailed theoretical description of the fluid pipe is given in Hancock & Bush (JFM, 466, 285-
304). We here present a simple scaling that yields the dependence of the vertical extent H of the
fluid pipe on the governing system parameters. We assume that, once the jet enters the fluid pipe,
a boundary layer develops on its outer wall owing to the no-slip boundary condition appropriate
there. Balancing viscous and Marangoni stresses on the pipe surface yields

ρν
V

δH
∼ ∆σ

H
, (33)
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Figure 6: The fluid pipe generated by a falling water jet impinging on a contaminated water
reservoir. The field of stationary capillary waves is excited above the fluid pipe. The grid at right
is millimetric.

where ∆σ is the surface tension differential between the jet and reservoir, V is the jet speed at
the top of the fluid pipe, and δH is the boundary layer thickness at the base of the fluid pipe. We
assume that the boundary layer thickness increases with distance z from the inlet according to
classical boundary layer scaling:

δ

a
∼

( νz

a2V

)1/2
. (34)

Substituting for δ(H) from (34) into (33) yields

H ∼ (∆σ)2

ρµV 3
. (35)

The pipe height increases with the surface tension differential and pipe radius, and decreases with
fluid viscosity and jet speed.
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