
1.63J/2.26J Advanced Fluid Dynamics Spring 2014

Problem Set No. 6

Out: Wednesday, April 30, 2014
Due: Monday, May 12, 2014 (in class, or before 5:00pm in Room 3-362)
Recitation: 4:30–5:30pm, Wednesday, May 7, 2014 in Room 1-150

Problems 1 and 2 are for Module I (Hydrodynamic Stability); Problems 3 and 4 are for
Module II (Biolocomotion)

Problem 1

Consider the piecewise-linear-profile model for a shear layer shown below. Examine the
stability of this profile to infinitesimal perturbations on the basis of linear inviscid stability
theory. Determine the wavenumber of the perturbation corresponding to the maximum
growth rate.
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Problem 2

Earlier in the term, we examined the stability of a thin film flowing down an inclined
plane on the assumption that all inertia terms are negligible, in which case the uniform film
was found to be stable. Here, we re-visit the stability of a uniform film, assuming finite
Reynolds number.
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Recall that the basic flow is given by
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g sinβ
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2

)
, P (y) = P0 − ρg cosβ (y − h), (1)

and the depth-average velocity is

U0 =
gh2 sinβ

3ν
. (2)

(a) Show from the full Navier–Stokes equations that infinitesimal disturbances are gov-
erned by the Orr–Sommerfeld equation
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for the vertical velocity perturbation v = v̂ exp {ik(x− ct)}, subject to the no-slip bottom
boundary conditions

v̂(0) =
dv̂

dy
(0) = 0. (4)



(b) By linearizing the kinematic and the normal- and tangential-stress conditions on the
free surface y = h+ η(x, t), obtain the following two conditions for v̂ on y = h:
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v̂ = 0 (y = h). (5b)

(c) The boundary-value problem consisting of the Orr–Sommerfeld equation (3), sub-
ject to the four boundary conditions (4) and (5), is an eigenvalue problem, c = cr + ici
being the eigenvalue, for given k real. Using the film depth h as length scale and the ve-
locity on the free surface U(h) as velocity scale, write this boundary-value problem in the
dimensionless form:
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being the Reyonlds number.

(d) Assume R = O(1) and consider disturbances of very long wavelength (k �
1 or, in dimensional variables,λ � h). Solve the eigenvalue problem (6)–(8) by a long-
wave perturbation expansion:

v̂ = v̂(0) + ik v̂(1) + (ik)2v̂(2) + ..., (9a)

c = c(0) + ik c(1) + (ik)2c(2) + ... . (9b)

From the O(1) problem, show that

v̂(0) = y2, c(0) = 2. (10)



(e) Finally, solve the O(k) problem and show that
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hence, conclude that instability to long-wave perturbations arises if
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Interpret this stability condition physically and compare to the case R = 0 discussed
earlier in the term.

Problem 3

Consider a “snail” driven by an out-of-plane wave as discussed in lecture. For an arbitrary
(periodic) wave form h(x, t), compute the efficiency of the crawler in terms of the integrals
Ij =

∫ 1

0
dx
hj .

Problem 4

In lecture we computed the digging speed and efficiency of a “pushmepullyou” bur-
rower. Compute the swimming speed and efficiency of the analogous “pushmepullyou” in
a fluid with viscosity µ. You may assume low Reynolds number in this calculation. Which
would you expect to be faster, the digger or the swimmer? Why? Which would you expect
to be more efficient?

Bonus question: Compute swimming speed and efficiency for a “pushmepullyou” in a
fluid, operating in a high Reynolds number regime (Re� 1).


