
1.63J/2.26J Advanced Fluid Dynamics

Take-Home Exam

Wednesday, May 14, 2014

This is a closed-book exam. You may use your own class notes, problem sets and the lecture
notes posted on the 1.63J/2.26J website only. You are not allowed to discuss this exam with
anyone else. If you need clarification regarding the problems 1, 2 or 3, please ask Professor
Akylas (trakylas@mit.edu); for problem 4 (Biolocomotion), please ask Professor Hosoi
(peko@mit.edu). The exam is due on Friday, May 16th, 2014 before 5:00pm, in Professor
Akylas’s office (Room 3-362).

Problem 1. (10 points)

An infinite rigid plate is covered by a layer of viscous fluid of kinematic viscosity ν and
thickness h, with the upper surface being free, as sketched below.

(i) Determine the flow induced, at steady state, when the plate oscillates in its own plane
with speed U0 cosωt.

(ii) Plot the induced velocity profile at ωt = 0, π/2, π, 3π/2 and discuss the nature of the
flow for small and large values of ωh2/ν.
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Problem 2. (10 points)

Water is contained between two infinite parallel plates separated by a distance h. The
bottom plate is held stationary, and the top plate is moved at a constant velocity U so that a
simple shear flow is generated between the plates. A band of a dye is injected between and
perpendicular to the plates extending fully across the gap, as sketched below. (The band
depth in z is very deep and may be supposed to be infinite.) The initial dye concentration
is C0, and its molecular diffusivity in water is D.

(i) Calculate the effective diffusivity for the injected dye in this shear flow. State explic-
itly the assumptions and approximations that you made.

(ii) Discuss qualitatively the long-time evolution of the dye concentration.
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Problem 3. Hydrodynamic stability (10 points)

Consider the simple ‘top-hat’ model for a plane jet of homogenous fluid, sketched below.
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Discuss the inviscid stability of this flow profile to infinitesimal two-dimensional perturba-
tions.



Problem 4. Biolocomotion(10 points)

Consider the swimmer depicted below. Throughout this problem you may assume that all
flows are low Reynolds number flows and that α0 � 1. The swimmer consists of two rigid,
slender bars of length L0 connected by a central hinge. The two bars are actuated such that:

α1(t) = α2(t) = α0 cos(ωt).

1. Show that the swimmer (without the spheres S1 and S2) is incapable of net motion
by computing the time-averaged swimming velocity over one period. (Please include
a sketch in your solution that indicates your chosen direction for the unit normal and
unit tangent vectors, n̂ and t̂).

2. Now consider the same swimmer with spheres S1 and S2 attached. Both spheres have
constant radius R. The spheres are actuated to move along the bars symmetrically
such that

x1(t) = x2(t) =
L0

2
[1 + sin(ωt)].

(a) Write down the kinematic constraint that relates the velocity of the spheres
to the (unknown) instantaneous swimming velocity V (t) and to other known
quantities.

(b) Compute the average swimming velocity of this swimmer (to lowest non-zero
order in α0).

(c) Compute the swimming efficiency of this swimmer (to lowest non-zero order
in α0).

3. Select kinematics α1(t), α2(t), x1(t), and x2(t) that allow the swimmer to turn a 90◦

corner. (You do not need to calculate velocities or efficiencies for your chosen kine-
matics as long as you provide a convincing physical argument for why the swimmer
will turn.)
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