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Standard formulation of optimization problem relies on algebraic constraints.  In many 
environmental applications constraints arise most naturally as differential equations.  How 
should these differential constraints be handled? 
 
Example – Allocation of waste heat discharges along a stream 
Problem is to select heat discharges WA and WB at 2 locations xA and xB along stream in order to 
maximize total heat discharged WA + WB, subject to upper limit (Tmax) on water temperature T. 
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Incorporate model based on stream energy balance (relates heat discharges and stream 
temperature): 
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E = Energy per unit length [Joules/m]  
ρ = Density of water [kg/m3] 
γ = Specific heat of water [Joules/(kg ° C)] 
Q = Stream flow [m3/day] 
T = Water temperature [° C] 
T0 =  Air temperature [° C] 
A = Stream cross-section [m2] 
ke = Exchange rate [1/day] 
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WA , WB Source heat flux [Joules/ day]  
δ(x - xA), δ(x - xB) = Dirac delta function at xA or xB [1/m], defined by: 
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Assume steady state (dE/dt = 0) and simplify to: 
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Suppose solution to this equation at any x is T(x, WA, WB). Then optimization problem is: 
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Note that the temperature constraint as given here is evaluated at every x (infinite number of 
algebraic constraints). 
 
There are three ways to write the constraint  maxBA TWWxT ≤),,(  in a practical (finite) form: 

1. Analytical solution - ),,( BA WWxT  is written as an explicit function of WA and WB. 
2. Imbedding - ),,( BA WWxT  is defined implicitly, by a set of discretized model 
equations. 
3. Response matrix - ),,( BA WWxT  is approximated by a Taylor series expressed in 
terms of model sensitivity derivatives. 

 
Analytical solution 
Solution to stream equation with upstream boundary condition imposed: 
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Apply definition of δ function to get: 

0BA TWWxT =),,(       x ≤ xA

)(),,( Axx
A0BA eWTWWxT −−+= αβ    xA  < x ≤ xB

)()(),,( Bxx
BAxx

A0BA eWeWTWWxT −−−− ++= αα ββ  x > xB
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Note that temperature is highest at the discharge points xA and xB. Therefore, we cam apply 
temperature constraint only at xA and xB rather than at all points x:
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This is in standard form, with algebraic rather than differential constraints. This approach is best 
when analytical solution is available, but that is not usually the case. 
 
Imbedding 
When an analytical solution is not available an approximate numerical solution can be obtained 
by discretizing the differential equation over a computational grid of equally spaced points x1, x2, 
…, xN.. 
 
In this example use either of two approximations for the spatial derivative at each computational 
grid point: 
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The Dirac delta function is approximated by 1/∆x. 
 
The explicit discretization yields a set of N coupled equations as follows: 
           x0TTi = i = x0

)(1 0iii TTxTT −∆−=+ α       x0 < xi ≤ xA

A0iii WTTxTT βα +−∆−=+ )(1      xA  < xi ≤  xB

B0iii WTTxTT βα +−∆−=+ )(1      xi > xB

 
These first-order difference equations have the same general form as the reservoir storage 
equation in Problem Set 3. 
 
The system of equations obtained from the implicit discretization is most conveniently 
expressed in matrix form: 

NkiWWbTA BAkiki ,,1,),( K==  
 

where  Aii = 1   for i =1,…, N 
 Ai,i-1 = α∆x-1   for i =2,…, N 
 Ai,k =0  otherwise  
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 bi = T0   for i =1  
 bi = α∆xT0  for i >1 and xi ≠ xA  or  xB

 bi = βWΑ + α∆xT0 for xi = xA  
 bi = βWΒ + α∆xT0 for xi = xB
 
Both the explicit and implicit discretizations are in a form that can be inserted directly into 
optimization software such as GAMS (note that the implicit matrix equation does need not be 
solved and the decision variables only appear on the right-hand side – the implicit constraints 
relating each Ti to WA and WB are sufficient).  
 
The disadavantage of imbedding is the large number of decision variables and constraints it 
produces (one for each grid point for each scalar differential equation). This is particularly 
inefficient in the example problem since we really only care about the temperature solutions at 
the two points xA and xB . Solutions at all the other upstream points need to be computed in order 
to obtain these two temperatures. 
 
Response Matrix 
Response matrix methods represent differential constraints with efficient linear approximations. 
 
Assume we have a numerical model available to evaluate temperatures  and ),( AA WxT

),,( BAB WWxT  at the discrete locations xA and xB, for any set of decision variables WA and WB. 
 
 

WA, WB Numerical Model 
(“Black Box”) 

Other inputs:
α,β,T0

TA=T(xA ,WA) 
TB=T(xB ,WA ,WB) 

 
 
 
 
 
 
   
 
Expand these temperatures in a Taylor series around nominal decision values (e.g. WA = WB = 0): 
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Associate the sensitivity derivatives with the elements of a response matrix R and rearrange equations: 
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Resulting constraints for the optimization problem are: 
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In this example the response matrix approximation is exact because the differential constraints 
are linear in the decision variables. Consequently, the response matrix elements can be identified 
directly from the analytical solutions above. 
 
More generally, we derive the sensitivity derivatives numerically, from multiple model 
evaluations.  For example: 
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This approach does not require knowledge of the model equations (i.e. the model can be a “black 
box”). 
 
The response matrix approach can also be used to approximate nonlinear differential 
constraints, so long as the Taylor series expansion is sufficiently accurate. 
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