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Standard formulation of optimization problem relies on algebraic constraints. In many
environmental applications constraints arise most naturally as differential equations. How
should these differential constraints be handled?

Example — Allocation of waste heat discharges along a stream
Problem is to select heat discharges Wp and Wpg at 2 locations Xp and Xg along stream in order to
maximize total heat discharged Wp + Wpg, subject to upper limit (Tnax) on water temperature T.

T(x),

Tmax

Stream temperature
profile

T ———————————
Q=
I I —>
| X i -
Wa Wr Heat sources

Incorporate model based on stream energy balance (relates heat discharges and stream

temperature):
dE dT
E=0=P7Q&+keAP7(T—TO)+WA5(X—XA)+WB5(X—XB) ; T(0)=Ty

E = Energy per unit length [Joules/m]

p = Density of water [kg/m3]

y= Specific heat of water [Joules/(kg ° C)]
Q = Stream flow [m3/day]

T = Water temperature [° C]

Tg = Air temperature [° C]

A = Stream cross-section [mz]

ke = Exchange rate [1/day]



Wa , Wg Source heat flux [Joules/ day]
XX - Xp), AX - Xg) = Dirac delta function at Xa or Xg [1/m], defined by:

IXU f(x)o(x—x")dx = f(x") x_ <x'<xy
XL
=0 otherwise

Assume steady state (dE/dt = 0) and simplify to:

‘;_I:-a(T—T0)+WA5(x—xA)+WB5(X—xB) ; T(0)=Ty
_keA 1
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Suppose solution to this equation at any X is T(X, Wa, Wg). Then optimization problem is:
Maximize W 5 +Wpg

TXCWAWE)<Thax 5 VX

Note that the temperature constraint as given here is evaluated at every X (infinite number of
algebraic constraints).
There are three ways to write the constraint T (X,Wa,Wg) < T ax 1n a practical (finite) form:

1. Analytical solution - T (x,Wa,Wg) is written as an explicit function of Wp and Wp.
2. Imbedding - T(x,W4,Wpg) is defined implicitly, by a set of discretized model
equations.

3. Response matrix - T(x,W,Wpg) is approximated by a Taylor series expressed in
terms of model sensitivity derivatives.

Analytical solution
Solution to stream equation with upstream boundary condition imposed:

X X
TOMWAWg) =To + AW [ 0956 —xp) dE + AW [em*O75(£ ~ xg) d¢
0 0

Apply definition of ¢ function to get:
T(X,Wa,Wg)=Tp X < Xa

T(XWa,Wg) =Ty + W e *XXA) XA < X< Xg

T(X,Wa,Wg)=Tp + AW e XA 4 pyge @XXB) x>y



Note that temperature is highest at the discharge points Xa and Xg. Therefore, we cam apply

temperature constraint only at Xa and Xg rather than at all points X:

Maximize W +Wg
W aWg

such that :

To + AW e ¥CBXA) 4 BWg —Troy <O at Xg

This is in standard form, with algebraic rather than differential constraints. This approach is best
when analytical solution is available, but that is not usually the case.

Imbedding

When an analytical solution is not available an approximate numerical solution can be obtained
by discretizing the differential equation over a computational grid of equally spaced points X1, Xy,

eees XN.-

In this example use either of two approximations for the spatial derivative at each computational

grid point:
a ~ TXie1) =T (X)) = Tis1 =T, Forward difference (explicit)
OX Xi AX AX
a ~ T6) =T (1) = Ti=Tio Backward difference (implicit)
OX AX AX

Xj
The Dirac delta function is approximated by 1/AX.

The explicit discretization yields a set of N coupled equations as follows:

T, =T, Xi = X0

Ty =T —aAx(T; = Tp) Xo < Xi < Xa
Ti1 =Ty —aAX(T; =Tp) + SWp Xa < X< Xg
Tip1 =Tj —aAx(Tj —Tg) + fWg Xj > Xg

These first-order difference equations have the same general form as the reservoir storage
equation in Problem Set 3.

The system of equations obtained from the implicit discretization is most conveniently
expressed in matrix form:

AkiTi :bk(WA’WB) i’k:]‘)"‘,N

where Ajj=1 fori=1,...,N
Aji.1 = aAx-1 fori=2,...,N
Aik =0 otherwise



bi=Ty fori=1

bj = aAXTy for i >1 and X; # Xa or Xg
bj= W 4+ aAXTy  for Xj=Xa

bj = fWg+ aAXTy  for Xj = X

Both the explicit and implicit discretizations are in a form that can be inserted directly into
optimization software such as GAMS (note that the implicit matrix equation does need not be
solved and the decision variables only appear on the right-hand side — the implicit constraints

relating each Tj to Wp and Wg are sufficient).

The disadavantage of imbedding is the large number of decision variables and constraints it
produces (one for each grid point for each scalar differential equation). This is particularly
inefficient in the example problem since we really only care about the temperature solutions at

the two points Xp and Xg . Solutions at all the other upstream points need to be computed in order
to obtain these two temperatures.

Response Matrix
Response matrix methods represent differential constraints with efficient linear approximations.

Assume we have a numerical model available to evaluate temperatures T (Xa,W ) and

T(xg,Wp,Wpg) at the discrete locations Xp and Xg, for any set of decision variables Wa and Wpg.

TA=T(Xa \Wa)
Wa, W . =
A TTB Numerical Model Te=T(xg WA .Wg)
— (“Black Box”) | >

Other inputs:
a.B,To

Expand these temperatures in a Taylor series around nominal decision values (e.g. Wp = Wp = 0):

Raa
T(xa W) =T (x,0) 4 EANR -y
M ly,o
OT (Xg,Wx,0 oT (xg,0,W
T(XB,WA,WB):T(XB,O,O)+% WA+$ Wg +...
A lwpa=0 B lwg=0
RBA RBB

Associate the sensitivity derivatives with the elements of a response matrix R and rearrange equations:

MY o W C iy



Resulting constraints for the optimization problem are:
To] [Rea ResJlWs] |Tmax
In this example the response matrix approximation is exact because the differential constraints

are linear in the decision variables. Consequently, the response matrix elements can be identified
directly from the analytical solutions above.

More generally, we derive the sensitivity derivatives numerically, from multiple model
evaluations. For example:

T(XB 9830) _T(XB 7090)
Rpa = "

This approach does not require knowledge of the model equations (i.e. the model can be a “black
box”).

The response matrix approach can also be used to approximate nonlinear differential
constraints, so long as the Taylor series expansion is sufficiently accurate.



