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Unconstrained Nonlinear Programming 
General statement of unconstrained nonlinear programming (NLP) problem: 
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All candidate solutions are feasible for unconstrained problems and optimum always lies inside 
feasible region. 
 
Necessary Conditions: 

1. Feasibility 
Any x* is feasible 
 
2. Stationarity 
If x* is a local maximum then:  
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3. Inequality Lagrange multiplier 
Not applicable since there are no constraints 
 
4. Curvature 
If x* is local maximum then:. 
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In NLP problems local maxima are usually not necessarily global maxima (convexity conditions 
usually do not hold). 
 
Finding a Local Maximum. 
Use an iterative search that moves from one candidate solution  on iteration k to a new 

candidate solution  on iteration k + 1: 
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Search procedure: 
Start by selecting an initial solution x0, set k = 0.  

1. Test for convergence, if converged set  and exit. kxx =*

2.  Compute a search direction vector  k
i

k pp =

3.  Compute a search distance αk  > 0 along . For some search methods αkp k is set to 1. 

4.  Compute the new solution  and go to Step 1 kkkkkk pxxxx α+=∆+=+1

 
If search is an ascent method then F(xk + 1) ≥ F(x) for αk sufficiently small. 
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First determine search direction pk. Then find 
αk that maximizes function along this 
direction. 
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There are a number of different search alternatives for UNLP.. 
 
Steepest Ascent/Gradient Search 
Derive pk by expanding F(xk + 1) in a first-order Taylor series in   : k
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The increase in F(x) is largest when  is aligned with the objective function gradient 
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 If the step  is too large the first-order expansion may not be valid. Control the step with αkx∆ k, 
which is derived by maximizing F(xk+1) with respect to αk (with pk given): 
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Use an iterative univariate search algorithm to solve this problem  (see Gill et al. for 
alternatives). This requires multiple evaluations of F(x) on each iteration. 
 
Usually the gradient  is derived numerically, using finite difference or adjpoint 
methods that require multiple evaluations of F(x) on each iteration. 
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Steepest ascent characteristics: 

• Converges very slowly (or not at all). 
• Univariate search for αk  is essential 
• Many function evaluations required 

 
Newton’s Method 
Derive pk by expanding F(xk + 1) in a second-order Taylor series about xk

 (with αk = 1, so 
): kk px =∆
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Maximize increase in F(x) with respect to pk  : 
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Necessary conditions for this quadratic optimization problem imply that: 
    where    = objective gradient k
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The Newton direction   is solution to this set of linear eqs. It is an ascent direction if 

 < 0 (negative definite). Modifications are needed at points where  and/or 

. Modified Newton methods replace indefinite Hessian by a positive definite 
approximation (e.g. by using an eigenvalue decomposition). 
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Usually the gradient and Hessian need to be computed numerically, using finite difference or 
adjoint methods. Exact Hessian computation may be infeasible for large problems because of the 
number of function evaluations required. 
 
Newton’s method characteristics: 

• Hessian must be negative definite 
• Converges faster than steepest ascent 
• Many function evaluations required 
• Very expensive to compute  if numerical differentiation is required. k

ijH
 
Quasi-Newton Methods 
Avoid computational disadvantages of Newton’s method and retain good convergence properties 
by gradually constructing a negative definite approximation to Hessian. 
 
Basic idea is to use an iterative algorithm to update an approximate negative definite Hessian 
matrix ., using only information about gradients and previous search steps.  The search 

direction p
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The new solution is usually obtained by using a search distance ak obtained from a univariate 
search: 
  kkkkkk pxxxx α+=∆+=+1

 
The iteration is often initialized with the negative of the identity matrix . 
Consequently, the first step is a steepest ascent step. 
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The approximate Hessian is obtained from:  
  where  is an update matrix kkk UBB +=+1 k
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How do we choose ?  Many options ! kU
 
The curvature of F(x) in the direction  at xk
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This can be expressed in terms of the objective gradient since: 
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We wish to obtain the same curvature when we replace kH  by  1+kB . This implies: 
        Quasi-Newton condition.for k → k +1 k
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In most quasi-Newton methods  is chosen subject to following requirements: kU

1. Bk+1 should satisfy the quasi-Newton condition: 
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2.  should be rank 1, which implies that  for some vectors ukU k
i

k
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ij vuU = k and vk. 

3.  should be symmetric (since BkU k+1 should be symmetric)  
 
There are various methods that satisfy these requirements asymptotically (for large k).  One of 
the most widely used is the Broyden-Fltecher-Goldfarb-Shanno (BFGS) algorithm: 
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When we substitute  and  this simplifies to: kkk px α=∆ k
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The BFGS update maintains the negative definiteness of the approximate Hessian from iteration 
to iteration.  
 
As in steepest ascent, the univariate search and gradient evaluation together require many 
function evaluations on each iteration. 
 
Quasi-Newton characteristics: 

• No need to derive Hessian 
• Approximate Hessian is negative definite 
• Univariate search for αk  is desirable 
• Many function evaluations required 
• Good convergence properties 
• Somewhat more expensive than steepest ascent but much more reliable. 

 
Gauss-Newton Methods 
Unconstrained nonlinear least-squares problems have a special structure that leads to efficient 
iterative search algorithms. These problems seek to minimize the weighted sum of squared 
errors between a set of measurements yt (t = 1,…, m) and a nonlinear model  that depends 

on a set of decision variables (or parameters)   (j = 1,…, n).  
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Solve iteratively, starting with an initial estimate . Obtain search step as follows: 0x
1. Set gradient at new iterate  equal to zero (from stationarity condition): 1+kx
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2. Approximate   by a first-order Taylor series expansion around previous iteration: )( jt xh
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  This is valid only if step  is sufficiently small. k
jx∆

3. Assume . j
k

tj
k

t xxhxxh ∂∂=∂∂ + /)(/)( 1

Then stationarity condition reduces to: 
  k

i
k
j

k
ij xB γ=∆

 
where: 

 
i

k
tk

t

N

t
tt

i

k

x
xh

xhyK
x
xF

∂
∂

−=
∂

∂ ∑
=

)(
)]([)(

1
 ∑

=

++

∂
∂

∂
∂

=
N

t j

k
t

i

k
t

t
k
ij x

xh
x
xh

KB
1

11 )()(
 

 
This is the Gauss-Newton search algorithm.  It has same form as Quasi-Newton algorithm, with 
a positive definite approximate Hessian kB   computed from the sensitivity derivatives 

 and with . Sensitivity derivatives are usually be computed 
numerically, from multiple evaluations of the function h(x). 
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Algorithm performance often improved by adding a positive constant λk to diagonals of kB  so: 
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This gives Levenberg-Marquardt search algorithm.  

Small λk  →  unmodified Gauss-Newton (steps may be too large) 
Large λk →  Steepest descent (steps may be too small) 

 It is helpful to adjust λk dynamically to improve convergence.  Univariate search along  is 
an alternative. 
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Gauss-Newton characteristics: 

• Specialized algorithm for least-squares (minimization) problems 
• Approximate positive definite Hessian is derived from sensitivity derivatives 
• Many function evaluations required 
• Good convergence properties 
• Most efficient option for least-squares problems (depending on effort required to evaluate 

sensitivity derivatives). 
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