MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering

1.731 Water Resource Systems

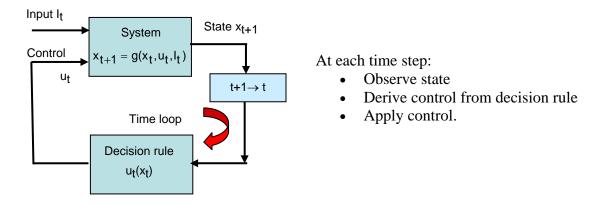
Lecture 19,20 Real-Time Optimization, Dynamic Programming Nov. 14, 16, 2006

Real-time optimization

Real-time optimization problems rely on **decision rules** that specify how decisions should maximize future benefit, given the current **state** of a system. State dependence provides a convenient way to deal with **uncertainty**. Some examples:

- Reservoir releases Decision rule specifies how current release should depend on current storage. Primary uncertainty is future reservoir inflow.
- Water treatment Decision rule specifies how current operating conditions (e.g. temperature or chemical inputs) should depend on current concentration in treatment tank. Primary uncertainty is future influent concentration.
- Irrigation management Decision rule specifies how current applied irrigation water should depend on current soil moisture and temperature. Primary uncertainties are future meteorological variables.

Real-time optimization can be viewed as a feedback control process:



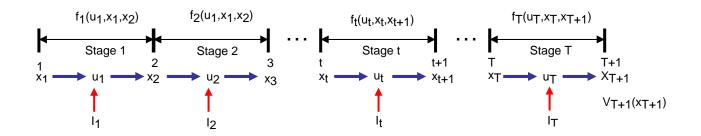
State variables:	x_t	(decision variables, depend on controls and inputs)
Control variables:	u_t	(decision variables, selected to maximize benefit)
Input variables:	I_t	(inputs, assigned specified values)
Decsion rule:	$u_t(x_t)$	(function that gives u_t for any x_t)

State equation:

 $x_{t+1} = g(x_t, u_t, I_t)$

Dynamic Programming

Dynamic programming provides a general framework for deriving decision rules. Discrete dynamic programming divides problem into stages (e.g. time periods, spatial intervals, etc.):



Benefit accrued over Stage t is $f_t(u_t, x_t, x_{t+1})$:

Optimization problem:

Select $u_t, ..., u_T$ that **maximizes benefit-to-go** (benefit accrued from current time *t* through terminal time *T*+1) at each time *t*:

$$\underset{u_t,...,u_T}{Max} F_t(x_t,...,x_{T+1},u_t,...,u_T) \qquad t = 1,...,T$$

where benefit-to-go at t is terminal benefit (salvage value) $V_{T+1}(x_{T+1})$ plus sum of benefits for stages t through T:

:
$$F_t(x_t,...,x_{T+1},u_t,...,u_T) = \sum_{i=t}^T f_i(u_i,x_i,x_{i+1}) + V_{T+1}(x_{T+1})$$

Benefit-to-go Benefit from Terminal benefit

subject to:

 $x_{i+1} = g_t(x_i, u_i, I_i)$; i = t, ..., T (state equation)

and other constraints on the decision variables:

 $\{x_t, ..., x_{T+1}, u_t, ..., u_T\} \in \Gamma_t$; i = t, ..., T (decision variables lie within some set Γ_t at t).

Objective may be rewritten if we repeatedly apply state equation to write all x_i (i > t) as functions of $x_t, u_t, ..., u_T, I_t, ..., I_T$:

$$F_t(x_t, ..., x_{T+1}, u_t, ..., u_T) = F_t(x_t, u_t, ..., u_T, I_t, ..., I_T)$$

Decision rule $u_t(x_t)$ at each t is obtained by finding sequence of controls $u_t, ..., u_T$ that maximizes $F_t(x_t, u_t, ..., u_T, I_t, ..., I_T)$ for a given state x_t and a given set of specified inputs $I_t, ..., I_T$.

Backward Recursion for Benefit-to-go

Dynamic programming uses a **recursion** to construct decision rule $u_t(x_t)$:

Define **return function** $V_t(x_t)$ to be maximum benefit-to-go at *t*:

$$V_t(x_t) = \max_{u_t,...,u_T} \left[F_t(x_t, u_t, ..., u_T, I_t, ..., I_T) \right]$$

Separate benefit term for Stage *t*:

$$V_t(x_t) = \underset{u_t}{Max} \left[f_t(u_t, x_t, x_{t+1}) + \underset{u_{t+1}, \dots, u_T}{Max} F_{t+1}(x_{t+1}, u_{t+1}, \dots, u_T, I_{t+1}, \dots, I_T) \right]$$

٦

Replace second term in brackets with definition for $V_{t+1}(x_{t+1})$:

$$V_t(x_t) = \underset{u_t}{Max} \Big[f_t(u_t, x_t, x_{t+1}) + V_{t+1}(x_{t+1}) \Big]$$

Substitute state equation for x_{t+1} :

$$V_t(x_t) = \underset{u_t}{Max} \{ f_t[u_t, x_t, g_t(x_t, u_t, I_t)] + V_{t+1}[g_t(x_t, u_t, I_t)] \}$$

This equation is a **backward recursion** for $V_t(x_t)$, initialized with terminal benefit $V_{T+1}[g(x_t, u_t, I_t)]$. Expression in braces depends only on u_t [which is varied to find the maximum], x_t [the argument of $V_t(x_t)$], and I_t [the specified input].

At each stage find the u_t that maximizes $V_t(x_t)$ for all possible x_t . Store the results (e.g. as a function or table) to obtain the desired decision rule $u_t(x_t)$.

Computational Effort

The problem variables are frequently **discretized** into a finite number of values x_t^j, u_t^j, I_t^j , j = 1, 2, ..., L where L =number of discrete levels.

The solution to the discretized optimization problem can be found by exhaustive enumeration (by comparing benefit-to-go for all possible $u_t(x_t)$ combinations).

Dynamic programming is much more efficient than enumeration since it divides the original T stage optimization problem into T smaller problems, one for each stage.

To compare computational effort of enumeration and dynamic programming assume:

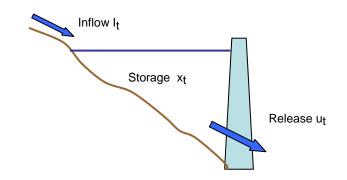
- State dimension = M, Stages = T, Levels = L
- Equal number of levels for u_t and x_t at every stage
- All possible state transitions are permissible (i.e. L^2 transitions at each stage)

Then total number of V_t evaluations required is:

Exhaustive enumeration: $L^{M(T+1)}$ Dynamic Programming: TL^{2M} For M = 1, L = 10, T = 10 the number of V_t evaluations required is: Exhaustive enumeration: 10^{11} Dynamic Programming: 10^3

Example 1: Reservoir Operations

Maximize benefits from water released from reservoir with variable inflows. Stages correspond to 3 time periods (months, seasons, etc. T = 3).



State equation:

 $x_{t+1} = x_t - u_t + I_t$ t = 1,...,3

Total benefit from released water and final storage x_4 :

 $F(x_1, u_1, ..., u_3) = f_1(u_1) + f_2(u_2) + f_3(u_3) + V_4(x_4)$

Discretize all variables into consistent levels:

 $u_t = \{0,1,2\}$ $x_t = \{0,1,2\}$ $I_t = \{0,1\}$ t = 1, 2, 3

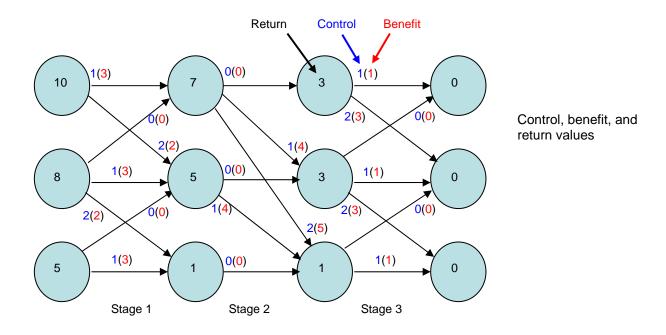
Inflows: $I_1 I_2 I_3 1 0 1$

Terminal (outflow) benefits: $V_4(x_4) = 0$ for all x_4 values

Benefits for each release:

u _t	$f_1(u_1)$	$f_2(u_2)$	$f_3(u_3)$
0	0	0	0
1	3	4	1
2	2	5	3

Possible state transitions are derived from state equation, inputs, and permissible variable values: Benefit is shown in parentheses after each feasible control value.



Solve series of 3 optimization problems defined by recursion equation for t = 3, 2, 1. Start at last stage and move backward:

Stage 3: Maximize
$$V_2(x_2)$$
 for each level of x_3 :
 $V_3(x_3) = \underset{u_3}{Max} [f_3(u_3) + V_4(x_4)] = \underset{u_3}{Max} [f_3(u_3) + V_4(x_3 - u_3 + I_3)]$

Identify optimum $u_3(x_3)$ values for each x_3 , $V_4(x_4)$ specified as an input:

Stage 2: Maximize $V_2(x_2)$ for each level of x_2 :

$$V_2(x_2) = \underset{u_2}{Max} [f_2(u_2) + V_3(x_3)] = \underset{u_2}{Max} [f_2(u_2) + V_3(x_2 - u_2 + I_2)]$$

Identify optimum $u_2(x_2)$ value for each x_2 , obtain $V_3(x_3)$ from Stage 3:

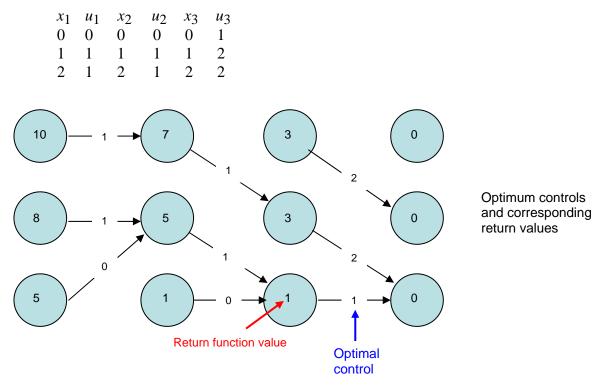
$$x_2$$
 $u_2(x_2) f_2(u_2) + V_3(x_3)$

Stage 1: Maximize
$$V_1(x_1)$$
 for each level of x_1 :

$$V_1(x_1) = \underset{u_1}{Max} [f_1(u_1) + V_2(x_2)] = \underset{u_1}{Max} [f_1(u_1) + V_2(x_1 - u_1 + I_1)]$$

Identify optimum $u_1(x_1)$ values for each x_1 , obtain $V_2(x_2)$ from Stage 2:

The optimum $u_t(x_t)$ decision rules for t = 1, 2, 3 define a complete optimum decision strategy:



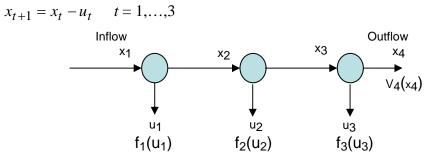
Note that there is a path leaving every state value. The optimum paths give a strategy for maximizing benefit-to-go from *t* onward, for any value of state x_t .

Optimal benefit for each possible initial storage is $V_1(x_1)$.

Example 2: Aqueduct diversions

Maximize benefits from water diverted from 3 locations along an aqueduct. Here the stages correspond to aqueduct sections rather than time (T = 3).

State equation:



Diversions & benefits

Total benefit from diverted water and outflow x_4 :

$$F(x_1, u_1, \dots, u_3) = f_1(u_1) + f_2(u_2) + f_3(u_3) + V_4(x_4)$$

Discretize all variables into 3 levels:

 $u_t = \{0, 1, 2\}$ $x_t = \{0, 1, 2\}$ t = 1, 2, 3

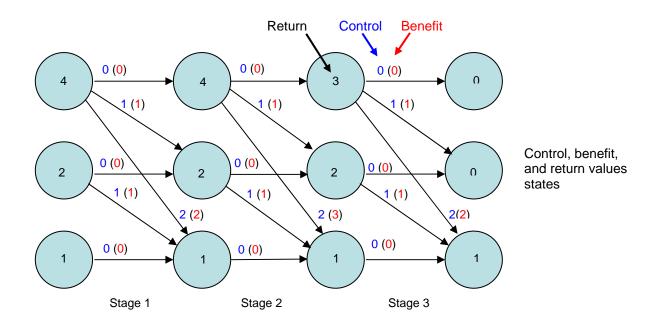
Benefits for each diversion:

u_t	$f_1(u_1)$	$f_2(u_2)$	$f_3(u_3)$
0	0	0	0
1	1	1	1
2	2	3	2

Terminal (outflow) benefits:

x_4	$V_4(x_4)$
0	1
1	0
2	0

Possible state transitions are derived from state equation, inputs, and permissible variable values: Benefit is shown in parentheses after each feasible control value.



Solve series of 3 optimization problems defined by recursion equation for t = 3, 2, 1. Start at last stage and move backward.

Stage 3: Maximize
$$V_2(x_2)$$
 for each level of x_3 :
 $V_3(x_3) = \underset{u_3}{Max} [f_3(u_3) + V_4(x_4)] = \underset{u_3}{Max} [f_3(u_3) + V_4(x_3 - u_3)]$

Use same procedure as in Example 1. Identify optimum $u_3(x_3)$ value for each x_3 , $V_4(x_4)$ specified as an input. Resulting optimum controls and returns are:

Stage 2: Maximize
$$V_2(x_2)$$
 for each level of x_2 :
 $V_2(x_2) = \underset{u_2}{Max} [f_2(u_2) + V_3(x_3)] = \underset{u_2}{Max} [f_2(u_2) + V_3(x_2 - u_2)]$

Use same procedure as in Example 1. Identify optimum $u_2(x_2)$ value for each x_2 , obtain $V_3(x_3)$ from Stage 3. Resulting optimum controls and returns are:

Stage 1: Maximize $V_1(x_1)$ for each level of x_1 :

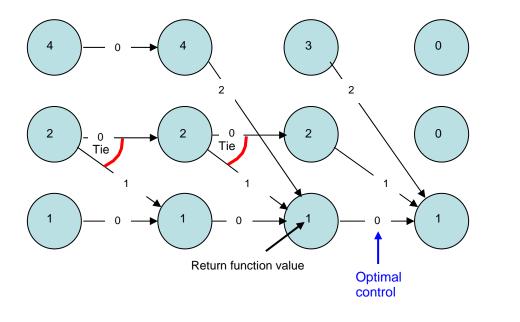
$$V_{1}(x_{1}) = \underset{u_{1}}{Max} [f_{1}(u_{1}) + V_{2}(x_{2})] = \underset{u_{1}}{Max} [f_{1}(u_{1}) + V_{2}(x_{1} - u_{1})]$$

Use same procedure as in Example 1. Identify optimum $u_1(x_1)$ value for each x_1 , obtain $V_2(x_2)$ from Stage 2. Resulting optimum controls and returns are:

The optimum $u_t(x_t)$ decision rules for t = 1, 2, 3 define a complete optimum decision strategy:

x_1	<i>u</i> ₁	x_2	<i>u</i> ₂	<i>x</i> ₃	из
0	0	0	0	0	0
1	0 or 1	1	0 or 1	1	1
2	0	2	2	2	2

Optimal benefit for each possible inflow is $V_1(x_1)$.



Optimum controls and corresponding return values