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Real-time optimization 
Real-time optimization problems rely on decision rules that specify how decisions should 
maximize future benefit, given the current state of a system. State dependence provides a 
convenient way to deal with uncertainty. Some examples: 
 
• Reservoir releases – Decision rule specifies how current release should depend on current 

storage. Primary uncertainty is future reservoir inflow. 
 
• Water treatment – Decision rule specifies how current operating conditions (e.g. temperature 

or chemical inputs) should depend on current concentration in treatment tank. Primary 
uncertainty is future influent concentration. 

 
• Irrigation management - Decision rule specifies how current applied irrigation water should 

depend on current soil moisture and temperature. Primary uncertainties are future 
meteorological variables. 

 
Real-time optimization can be viewed as a feedback control process: 
 
 

Time loop 

t+1→ t 

At each time step: 
• Observe state 
• Derive control from decision rule 
• Apply control. 

Decision rule   
ut(xt) 

System 
 

)tI,tu,tg(x1tx =+

 
Control 

Input It 
State xt+1

ut 

 
 
 
 
 
 
 
 
 
 
 
State variables: xt (decision variables, depend on controls and inputs) 
Control variables: ut (decision variables, selected to maximize benefit)   
Input variables: It (inputs, assigned specified values) 
Decsion rule:   (function that gives u)( tt xu t for any xt)  
 
State equation:   ),,(1 tttt Iuxgx =+
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Dynamic Programming 
Dynamic programming provides a general framework for deriving decision rules. Discrete 
dynamic programming divides problem into stages (e.g. time periods, spatial intervals, etc.): 
 
 
 
 
 
 
 
 

Stage 1 

u1 
2 

x2 
3 

Stage t 

xt+1
t+1 

ut

ft(ut,xt,xt+1)

t
xt

…

u2 x3 

Stage 2 

f2(u1,x1,x2)f1(u1,x1,x2)

1 
x1

Stage T 

uT XT+1

VT+1(xT+1) 

T+1

fT(uT,xT,xT+1)

T
xT

…

It ITI1 I2  
 
Benefit accrued over Stage t is  :),,( 1+tttt xxuf
 
Optimization problem: 
Select  that maximizes benefit-to-go (benefit accrued from current time t through 
terminal time T+1) at each time t: 

Tt uu ,...,

  t = 1,…,T ),...,,,...,( 1
,...

TtTtt
Tutu

uuxxFMax +

 
where benefit-to-go at t is terminal benefit (salvage value) )( 11 ++ TT xV  plus sum of benefits for 
stages t through T: 

:  )(),,(),...,,,...,( 1111 ++
=

++ += ∑ TT

T

ti
iiiiTtTtt xVxxufuuxxF

Terminal
benefit 

 Benefit from 
remaining stages 

 Benefit-to-go 
 
 
subject to: 
    (state equation) TtiIuxgx iiiti ,...,;),,(1 ==+
 
and other constraints on the decision variables: 
 Ttiuuxx tTtTt ,...,;},...,,,...,{ 1 =Γ∈+  (decision variables lie within some set  at t). tΓ
 
Objective may be rewritten if we repeatedly apply state equation to write all  as 

functions of  

)( tixi >

TtTtt IIuux ,...,,,...,, :
  ),...,,,...,,(),...,,,...,( 1 TtTtttTtTtt IIuuxFuuxxF =+
 
Decision rule )  at each t is obtained by finding sequence of controls  that 
maximizes  for a given state  and a given set of specified inputs 

.  

( tt xu Tt uu ,...,
),...,,,...,,( TtTttt IIuuxF tx

Tt II ,...,
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Backward Recursion for Benefit-to-go 
Dynamic programming uses a recursion to construct decision rule : )( tt xu
 
Define return function )  to be maximum benefit-to-go at t: ( tt xV
  [ ]),...,,,...,,()(

,...,
TtTttt

Tutu
tt IIuuxFMaxxV =

   
Separate benefit term for Stage t:  

  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ++++

+
+ ),...,,,...,,(),,()( 1111

,...1
1 TtTttt

Tutu
tttt

tu
tt IIuuxFMaxxxufMaxxV

 
Replace second term in brackets with definition for : )( 11 ++ tt xV
 [ ])(),,()( 111 +++ += tttttt

tu
tt xVxxufMaxxV  

Substitute state equation for xt+1: 
 { })],,([)],,(,,[)( 1 tttttttttttt

tu
tt IuxgVIuxgxufMaxxV ++=  

 
This equation is a backward recursion for  , initialized with terminal benefit 

.  Expression in braces depends only on u

)( tt xV

)],,([1 tttT IuxgV + t [which is varied to find the 

maximum], xt [the argument of Vt (xt)], and It [the specified input]. 
 
At each stage find the ut that maximizes  for all possible x)( tt xV t. 
Store the results (e.g. as a function or table) to obtain the desired decision rule . )( tt xu
 
Computational Effort 
The problem variables are frequently discretized into a finite number of values  , j = 
1, 2, …,L where L =number of discrete levels.  

j
t

j
t

j
t Iux ,,

 
The solution to the discretized optimization problem can be found by exhaustive enumeration 
(by comparing benefit-to-go for all possible  combinations). )( tt xu
 
Dynamic programming is much more efficient than enumeration since it divides the original T 
stage optimization problem into T smaller problems, one for each stage.  
 
To compare computational effort of enumeration and dynamic programming assume: 

• State dimension = M, Stages = T, Levels = L 
• Equal number of levels for ut and xt at every stage 
• All possible state transitions are permissible (i.e. L2 transitions at each stage) 

 
 
Then total number of  evaluations required is: tV
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 Exhaustive enumeration:  LM(T+1)

 Dynamic Programming:  TL2M  
For M = 1, L = 10, T = 10 the number of  evaluations required is:  tV

 Exhaustive enumeration:  1011

 Dynamic Programming:   103

 
Example 1: Reservoir Operations 
Maximize benefits from water released from reservoir with variable inflows. 
Stages correspond to 3 time periods (months, seasons, etc.  T = 3). 
 
 
 Inflow It 

Storage  xt 

 
 
 
 
 Release ut  
 
 
 
State equation: 
      t = 1,…,3 tttt Iuxx +−=+1
 
Total benefit from released water and final storage  x4: 
 )()()()(),...,,( 44332211311 xVufufufuuxF +++=  
 
Discretize all variables into consistent levels: 
 ut = {0,1,2}       xt = {0,1,2) It = {0,1)   t = 1, 2, 3  
 
Inflows: I1 I2 I3 
  1 0 1 
Terminal (outflow) benefits:  V4(x4) = 0 for all x4 values 
  
Benefits for each release: 
 ut f1(u1)  f2(u2) f3(u3) 
 0 0 0 0 
 1 3 4 1 
 2 2 5 3 
 
 
 
Possible state transitions are derived from state equation, inputs, and permissible variable values: 
Benefit is shown in parentheses after each feasible control value. 
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Stage 1 Stage 2 Stage 3 

Control, benefit, and 
return values 

1 1 0 5 

5 3 0 8 

1(4) 
2(5) 

1(4) 

0(0) 

0(0) 

2(3) 

2(3) 

2(2) 

2(2) 

0(0) 

0(0) 

0(0) 

0(0) 

1(1) 

1(1) 

1(3) 

1(3) 

1(3) 1(1)  0(0) 

Return Benefit Control 

10 7 3 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solve series of 3 optimization problems defined by recursion equation for t = 3, 2, 1. 
Start at last stage and move backward: 
 
Stage 3: Maximize V2(x2) for each level of x3: 
 [ ] [ ])()()()()( 333433

3
4433

3
33 IuxVufMaxxVufMaxxV

uu
+−+=+=  

Identify optimum u3(x3) values for each x3, V4(x4) specified as an input: 
  x3 u3(x3) f3(u3) +  V4(x4)     
  0 0    0     +    0       = 0 
   1    1     +    0       = 1 =  V3(x3) Optimum 
   
  1 0    0     +    0       = 0 
   1    1     +    0       = 1 
   2    3     +    0       = 3 =  V3(x3) Optimum 
 
  2 1    1     +    0       = 1 
   2    3     +    0       = 3 =  V3(x3) Optimum 
 
Stage 2: Maximize V2(x2) for each level of x2: 
 [ ] [ ])()()()()( 222322

2
3322

2
22 IuxVufMaxxVufMaxxV

uu
+−+=+=  

Identify optimum u2(x2) value for each x2, obtain V3(x3) from Stage 3: 
   
  x2 u2(x2) f2(u2) +  V3(x3)    
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Optimum   0 0    0     +    1       = 1 = V2(x2)  
 
  1 0   0      +    3       = 3   

Optimum 

Optimum 

   1   4      +    1       = 5 = V2(x2) 
 
  2 0   0      +    3       = 4 
   1   4      +    3       = 7 = V2(x2) 
   2   5      +    1       = 6 
 
Stage 1: Maximize V1(x1) for each level of x1: 
 [ ] [ ])()()()()( 111211

1
2211

1
11 IuxVufMaxxVufMaxxV

uu
+−+=+=  

Identify optimum u1(x1) values for each x1, obtain V2(x2) from Stage 2: 
  x1 u1(x1)    f2(u2) +  V2(x2)    

Optimum   0 0     0      +    5       = 5 = V1(x1) 
   1     3      +    1       = 4  
   
  1 0     0     +    7       = 7 =  V1(x1) Optimum 
   1     3     +    5       = 8 
   2     2     +    1       = 3 
 

Optimum   2 1     3     +    7       = 10 = V1(x1) 
   2     2     +    5       = 7 
The optimum ut(xt) decision rules for t = 1, 2, 3 define a complete optimum decision strategy: 

x1    u1     x2     u2     x3     u3 
0     0      0       0      0      1 
1     1      1       1      1      2 
2     1      2       1      2      2 

 
 

0 

105 

Optimal 
control 

1 1 0 

 1  

 

10 7 3 0 

1 

2

8 5 3 0 

Optimum controls 
and corresponding 
return values 

1 

1 2

 
 
 
 
 
 
 
 
 
 
 
 

Return function value  
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Note that there is a path leaving every state value. The optimum paths give a strategy for 
maximizing benefit-to-go from t onward, for any value of state xt.  
 
Optimal benefit for each possible initial storage is V1(x1). 
 
Example 2: Aqueduct diversions 
Maximize benefits from water diverted from 3 locations along an aqueduct. 
Here the stages correspond to aqueduct sections rather than time (T = 3). 
 
State equation: 
      t = 1,…,3 ttt uxx −=+1
 Inflow Outflow

x4 

u1 

x1 

u2 

x2 x3 

u3
f1(u1) f2(u2) f3(u3) 

V4(x4) 

 
 
 
 
 
 
 Diversions & benefits
 
Total benefit from diverted water and outflow  x4: 
 )()()()(),...,,( 44332211311 xVufufufuuxF +++=  
 
Discretize all variables into 3 levels: 
 ut = {0,1,2}       xt = {0,1,2) t = 1, 2, 3  
 
Benefits for each diversion: 
 ut f1(u1)  f2(u2)  f3(u3) 
 0 0  0  0 
 1 1  1  1 
 2 2  3  2 
 
Terminal (outflow) benefits: 
 x4 V4(x4)  
 0 1   
 1 0  
 2 0  
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Possible state transitions are derived from state equation, inputs, and permissible variable values: 
Benefit is shown in parentheses after each feasible control value. 
 
 
 
  

2(2)2 (2) 2 (3) 

Benefit 

1 (1) 

0 (0)0 (0) 0 (0) 

0 (0)0 (0) 0 (0)

0 (0)0 (0) 0 (0)
11 1 1

4 34 0

2 2 2 0

1 (1) 1 (1) 1 (1) 

1 (1) 1 (1) 

Control Return

 
 
 
 
 

Control, benefit, 
and return values 
states 

 
 
 
 
 
 
 
 

Stage 1 Stage 2 Stage 3  
 
 
Solve series of 3 optimization problems defined by recursion equation for t = 3, 2, 1. 
Start at last stage and move backward. 
 
Stage 3: Maximize V2(x2) for each level of x3: 
 [ ] [ ])()()()()( 33433

3
4433

3
33 uxVufMaxxVufMaxxV

uu
−+=+=  

Use same procedure as in Example 1. Identify optimum u3(x3) value for each x3, V4(x4) 
specified as an input. Resulting optimum controls and returns are: 
  x3 u3(x3) V3(x3)  
  0 0 1   
  1 1 2 
  2 2 3 
 
Stage 2: Maximize V2(x2) for each level of x2: 
 [ ] [ ])()()()()( 22322

2
3322

2
22 uxVufMaxxVufMaxxV

uu
−+=+=  

Use same procedure as in Example 1. Identify optimum u2(x2) value for each x2, obtain V3(x3) 
from Stage 3. Resulting optimum controls and returns are: 
  x2 u2(x2) V2(x2)  
  0 0 1   
  1 0 or 1 2 
  2 2 4 
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Stage 1: Maximize V1(x1) for each level of x1: 
 [ ] [ ])()()()()( 11211

1
2211

1
11 uxVufMaxxVufMaxxV

uu
−+=+=  

Use same procedure as in Example 1. Identify optimum u1(x1) value for each x1, obtain V2(x2) 
from Stage 2. Resulting optimum controls and returns are: 

 x1 u1(x1) V1(x1)  
 0 0 1   
 1 0 or 1 2 
 2 0 4 

 
The optimum ut(xt) decision rules for t = 1, 2, 3 define a complete optimum decision strategy: 

 
x1    u1      x2     u2      x3     u3 
0     0       0       0        0      0 
1     0 or 1       1       0 or 1            1      1 
2     0  2       2             2      2 
 

Optimal benefit for each possible inflow is V1(x1). 
  
 
 

Optimal 
control 

00 01 1 1 

Return function value 

1 

 0  4 4 3 0 

11 

 0 0

2 

2 2 
Tie Tie 

2 0 
 

2

1 
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return values 


