
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Civil and Environmental Engineering

1.731 Water Resource Systems

Lecture 19,20 Real-Time Optimization, Dynamic Programming
Nov. 14, 16, 2006

Real-time optimization
Real-time optimization problems rely on decision rules that specify how decisions should
maximize future benefit, given the current state of a system. State dependence provides a
convenient way to deal with uncertainty. Some examples:

• Reservoir releases – Decision rule specifies how current release should depend on current

storage. Primary uncertainty is future reservoir inflow.

• Water treatment – Decision rule specifies how current operating conditions (e.g. temperature

or chemical inputs) should depend on current concentration in treatment tank. Primary
uncertainty is future influent concentration.

• Irrigation management - Decision rule specifies how current applied irrigation water should

depend on current soil moisture and temperature. Primary uncertainties are future
meteorological variables.

Real-time optimization can be viewed as a feedback control process:

Time loop

t+1→ t

At each time step:
• Observe state
• Derive control from decision rule
• Apply control.

Decision rule
ut(xt)

System

)tI,tu,tg(x1tx =+

Control

Input It
State xt+1

ut

State variables: xt (decision variables, depend on controls and inputs)
Control variables: ut (decision variables, selected to maximize benefit)
Input variables: It (inputs, assigned specified values)
Decsion rule: (function that gives u)(tt xu t for any xt)

State equation:),,(1 tttt Iuxgx =+

 1

Dynamic Programming
Dynamic programming provides a general framework for deriving decision rules. Discrete
dynamic programming divides problem into stages (e.g. time periods, spatial intervals, etc.):

Stage 1

u1
2

x2
3

Stage t

xt+1
t+1

ut

ft(ut,xt,xt+1)

t
xt

…

u2 x3

Stage 2

f2(u1,x1,x2)f1(u1,x1,x2)

1
x1

Stage T

uT XT+1

VT+1(xT+1)

T+1

fT(uT,xT,xT+1)

T
xT

…

It ITI1 I2

Benefit accrued over Stage t is :),,(1+tttt xxuf

Optimization problem:
Select that maximizes benefit-to-go (benefit accrued from current time t through
terminal time T+1) at each time t:

Tt uu ,...,

 t = 1,…,T),...,,,...,(1
,...

TtTtt
Tutu

uuxxFMax +

where benefit-to-go at t is terminal benefit (salvage value))(11 ++ TT xV plus sum of benefits for
stages t through T:

:)(),,(),...,,,...,(1111 ++
=

++ += ∑ TT

T

ti
iiiiTtTtt xVxxufuuxxF

Terminal
benefit

 Benefit from
remaining stages

 Benefit-to-go

subject to:
 (state equation) TtiIuxgx iiiti ,...,;),,(1 ==+

and other constraints on the decision variables:
 Ttiuuxx tTtTt ,...,;},...,,,...,{ 1 =Γ∈+ (decision variables lie within some set at t). tΓ

Objective may be rewritten if we repeatedly apply state equation to write all as

functions of

)(tixi >

TtTtt IIuux ,...,,,...,, :
),...,,,...,,(),...,,,...,(1 TtTtttTtTtt IIuuxFuuxxF =+

Decision rule) at each t is obtained by finding sequence of controls that
maximizes for a given state and a given set of specified inputs

.

(tt xu Tt uu ,...,
),...,,,...,,(TtTttt IIuuxF tx

Tt II ,...,

 2

Backward Recursion for Benefit-to-go
Dynamic programming uses a recursion to construct decision rule :)(tt xu

Define return function) to be maximum benefit-to-go at t: (tt xV
 []),...,,,...,,()(

,...,
TtTttt

Tutu
tt IIuuxFMaxxV =

Separate benefit term for Stage t:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ++++

+
+),...,,,...,,(),,()(1111

,...1
1 TtTttt

Tutu
tttt

tu
tt IIuuxFMaxxxufMaxxV

Replace second term in brackets with definition for :)(11 ++ tt xV
 [])(),,()(111 +++ += tttttt

tu
tt xVxxufMaxxV

Substitute state equation for xt+1:
 { })],,([)],,(,,[)(1 tttttttttttt

tu
tt IuxgVIuxgxufMaxxV ++=

This equation is a backward recursion for , initialized with terminal benefit

. Expression in braces depends only on u

)(tt xV

)],,([1 tttT IuxgV + t [which is varied to find the

maximum], xt [the argument of Vt (xt)], and It [the specified input].

At each stage find the ut that maximizes for all possible x)(tt xV t.
Store the results (e.g. as a function or table) to obtain the desired decision rule .)(tt xu

Computational Effort
The problem variables are frequently discretized into a finite number of values , j =
1, 2, …,L where L =number of discrete levels.

j
t

j
t

j
t Iux ,,

The solution to the discretized optimization problem can be found by exhaustive enumeration
(by comparing benefit-to-go for all possible combinations).)(tt xu

Dynamic programming is much more efficient than enumeration since it divides the original T
stage optimization problem into T smaller problems, one for each stage.

To compare computational effort of enumeration and dynamic programming assume:

• State dimension = M, Stages = T, Levels = L
• Equal number of levels for ut and xt at every stage
• All possible state transitions are permissible (i.e. L2 transitions at each stage)

Then total number of evaluations required is: tV

 3

 Exhaustive enumeration: LM(T+1)

 Dynamic Programming: TL2M
For M = 1, L = 10, T = 10 the number of evaluations required is: tV

 Exhaustive enumeration: 1011

 Dynamic Programming: 103

Example 1: Reservoir Operations
Maximize benefits from water released from reservoir with variable inflows.
Stages correspond to 3 time periods (months, seasons, etc. T = 3).

 Inflow It

Storage xt

 Release ut

State equation:
 t = 1,…,3 tttt Iuxx +−=+1

Total benefit from released water and final storage x4:
)()()()(),...,,(44332211311 xVufufufuuxF +++=

Discretize all variables into consistent levels:
 ut = {0,1,2} xt = {0,1,2) It = {0,1) t = 1, 2, 3

Inflows: I1 I2 I3
 1 0 1
Terminal (outflow) benefits: V4(x4) = 0 for all x4 values

Benefits for each release:
 ut f1(u1) f2(u2) f3(u3)
 0 0 0 0
 1 3 4 1
 2 2 5 3

Possible state transitions are derived from state equation, inputs, and permissible variable values:
Benefit is shown in parentheses after each feasible control value.

 4

Stage 1 Stage 2 Stage 3

Control, benefit, and
return values

1 1 0 5

5 3 0 8

1(4)
2(5)

1(4)

0(0)

0(0)

2(3)

2(3)

2(2)

2(2)

0(0)

0(0)

0(0)

0(0)

1(1)

1(1)

1(3)

1(3)

1(3) 1(1) 0(0)

Return Benefit Control

10 7 3 0

Solve series of 3 optimization problems defined by recursion equation for t = 3, 2, 1.
Start at last stage and move backward:

Stage 3: Maximize V2(x2) for each level of x3:
 [] [])()()()()(333433

3
4433

3
33 IuxVufMaxxVufMaxxV

uu
+−+=+=

Identify optimum u3(x3) values for each x3, V4(x4) specified as an input:
 x3 u3(x3) f3(u3) + V4(x4)
 0 0 0 + 0 = 0
 1 1 + 0 = 1 = V3(x3) Optimum

 1 0 0 + 0 = 0
 1 1 + 0 = 1
 2 3 + 0 = 3 = V3(x3) Optimum

 2 1 1 + 0 = 1
 2 3 + 0 = 3 = V3(x3) Optimum

Stage 2: Maximize V2(x2) for each level of x2:
 [] [])()()()()(222322

2
3322

2
22 IuxVufMaxxVufMaxxV

uu
+−+=+=

Identify optimum u2(x2) value for each x2, obtain V3(x3) from Stage 3:

 x2 u2(x2) f2(u2) + V3(x3)

 5

Optimum 0 0 0 + 1 = 1 = V2(x2)

 1 0 0 + 3 = 3

Optimum

Optimum

 1 4 + 1 = 5 = V2(x2)

 2 0 0 + 3 = 4
 1 4 + 3 = 7 = V2(x2)
 2 5 + 1 = 6

Stage 1: Maximize V1(x1) for each level of x1:
 [] [])()()()()(111211

1
2211

1
11 IuxVufMaxxVufMaxxV

uu
+−+=+=

Identify optimum u1(x1) values for each x1, obtain V2(x2) from Stage 2:
 x1 u1(x1) f2(u2) + V2(x2)

Optimum 0 0 0 + 5 = 5 = V1(x1)
 1 3 + 1 = 4

 1 0 0 + 7 = 7 = V1(x1) Optimum
 1 3 + 5 = 8
 2 2 + 1 = 3

Optimum 2 1 3 + 7 = 10 = V1(x1)
 2 2 + 5 = 7
The optimum ut(xt) decision rules for t = 1, 2, 3 define a complete optimum decision strategy:

x1 u1 x2 u2 x3 u3
0 0 0 0 0 1
1 1 1 1 1 2
2 1 2 1 2 2

0

105

Optimal
control

1 1 0

 1

10 7 3 0

1

2

8 5 3 0

Optimum controls
and corresponding
return values

1

1 2

Return function value

 6

Note that there is a path leaving every state value. The optimum paths give a strategy for
maximizing benefit-to-go from t onward, for any value of state xt.

Optimal benefit for each possible initial storage is V1(x1).

Example 2: Aqueduct diversions
Maximize benefits from water diverted from 3 locations along an aqueduct.
Here the stages correspond to aqueduct sections rather than time (T = 3).

State equation:
 t = 1,…,3 ttt uxx −=+1
 Inflow Outflow

x4

u1

x1

u2

x2 x3

u3
f1(u1) f2(u2) f3(u3)

V4(x4)

 Diversions & benefits

Total benefit from diverted water and outflow x4:
)()()()(),...,,(44332211311 xVufufufuuxF +++=

Discretize all variables into 3 levels:
 ut = {0,1,2} xt = {0,1,2) t = 1, 2, 3

Benefits for each diversion:
 ut f1(u1) f2(u2) f3(u3)
 0 0 0 0
 1 1 1 1
 2 2 3 2

Terminal (outflow) benefits:
 x4 V4(x4)
 0 1
 1 0
 2 0

 7

Possible state transitions are derived from state equation, inputs, and permissible variable values:
Benefit is shown in parentheses after each feasible control value.

2(2)2 (2) 2 (3)

Benefit

1 (1)

0 (0)0 (0) 0 (0)

0 (0)0 (0) 0 (0)

0 (0)0 (0) 0 (0)
11 1 1

4 34 0

2 2 2 0

1 (1) 1 (1) 1 (1)

1 (1) 1 (1)

Control Return

Control, benefit,
and return values
states

Stage 1 Stage 2 Stage 3

Solve series of 3 optimization problems defined by recursion equation for t = 3, 2, 1.
Start at last stage and move backward.

Stage 3: Maximize V2(x2) for each level of x3:
 [] [])()()()()(33433

3
4433

3
33 uxVufMaxxVufMaxxV

uu
−+=+=

Use same procedure as in Example 1. Identify optimum u3(x3) value for each x3, V4(x4)
specified as an input. Resulting optimum controls and returns are:
 x3 u3(x3) V3(x3)
 0 0 1
 1 1 2
 2 2 3

Stage 2: Maximize V2(x2) for each level of x2:
 [] [])()()()()(22322

2
3322

2
22 uxVufMaxxVufMaxxV

uu
−+=+=

Use same procedure as in Example 1. Identify optimum u2(x2) value for each x2, obtain V3(x3)
from Stage 3. Resulting optimum controls and returns are:
 x2 u2(x2) V2(x2)
 0 0 1
 1 0 or 1 2
 2 2 4

 8

Stage 1: Maximize V1(x1) for each level of x1:
 [] [])()()()()(11211

1
2211

1
11 uxVufMaxxVufMaxxV

uu
−+=+=

Use same procedure as in Example 1. Identify optimum u1(x1) value for each x1, obtain V2(x2)
from Stage 2. Resulting optimum controls and returns are:

 x1 u1(x1) V1(x1)
 0 0 1
 1 0 or 1 2
 2 0 4

The optimum ut(xt) decision rules for t = 1, 2, 3 define a complete optimum decision strategy:

x1 u1 x2 u2 x3 u3
0 0 0 0 0 0
1 0 or 1 1 0 or 1 1 1
2 0 2 2 2 2

Optimal benefit for each possible inflow is V1(x1).

Optimal
control

00 01 1 1

Return function value

1

 0 4 4 3 0

11

 0 0

2

2 2
Tie Tie

2 0

2

1

 9
Optimum controls
and corresponding
return values

