MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Civil and Environmental Engineering

1.731 Water Resource Systems

Lecture 19,20 Real-Time Optimization, Dynamic Programming
Nov. 14, 16, 2006

Real-time optimization

Real-time optimization problems rely on decision rules that specify how decisions should
maximize future benefit, given the current state of a system. State dependence provides a
convenient way to deal with uncertainty. Some examples:

« Reservoir releases — Decision rule specifies how current release should depend on current
storage. Primary uncertainty is future reservoir inflow.

« Water treatment — Decision rule specifies how current operating conditions (e.g. temperature
or chemical inputs) should depend on current concentration in treatment tank. Primary
uncertainty is future influent concentration.

« Irrigation management - Decision rule specifies how current applied irrigation water should
depend on current soil moisture and temperature. Primary uncertainties are future
meteorological variables.

Real-time optimization can be viewed as a feedback control process:

Input It
—p System State Xt+1
Control_y | Xte1 = 9Xp Uplp) ! At each time step:

ut

e Observe state
o Derive control from decision rule

Time loop : « Apply control.

Decision rule

State variables:

Control variables:

Input variables:
Decsion rule:

State equation:

D ———
ut(xt)
Xt (decision variables, depend on controls and inputs)
Uy (decision variables, selected to maximize benefit)
It (inputs, assigned specified values)

Ut (%¢) (function that gives ug for any x;)

Xi+1 = 9(X¢, Ug, 1t)

Dynamic Programming
Dynamic programming provides a general framework for deriving decision rules. Discrete
dynamic programming divides problem into stages (e.g. time periods, spatial intervals, etc.):

f(uyx1%2) falug x1.x2) fi(ut Xt Xe+1) FTUTXTXT+1)
I Stage 1 I Stage 2 I I Stage t I I Stage T I
1 2 3 t t+1 T T+1
X1 > Uug » X2 > U2 » x3 Xt w—] Ut =— X{}1] XT ey T ey X711
T T T T VT+1(xT+1)
1 l2 It IT

Benefit accrued over Stage tis fi(Ut, X, Xt41) -

Optimization problem:
Select uy,...,ut that maximizes benefit-to-go (benefit accrued from current time t through
terminal time T+1) at each time t:

Max Ft (Xt XT 41, Ut UT) t=1,...T
Ut,..ut

where benefit-to-go at t is terminal benefit (salvage value) V1,1 (XT4+1) plus sum of benefits for
stages t through T:

T
DR O X741 U Ur) = D iU %0 X01) + Vraa(Xra)

i=t

Benefit-to-go Benefit from Terminal
remaining stages benefit
subject to:
Xi+1 = 9t (X, Ui, 1) 5 i=t.., T (state equation)

and other constraints on the decision variables:
{Xt)ooos XT 41, Uty U e Iy s i =1,..., T (decision variables lie within some set T at t).

Objective may be rewritten if we repeatedly apply state equation to write all x; (i>t) as
functions of X¢,Ug,...,ut, It .., I7:
Fe (Xt X7 41, Ug oo, U) = R (Xg Ug e U g 1)

Decision rule u; (x;) at each t is obtained by finding sequence of controls uy,...,ur that
maximizes F (X¢,Ut,...,ut, lt,...,I7) for a given state x; and a given set of specified inputs

Ly I

Backward Recursion for Benefit-to-go
Dynamic programming uses a recursion to construct decision rule u; (X¢):

Define return function Vi (X;) to be maximum benefit-to-go at t:

Vt(xt): MaX [Ft(xt,ut,...,UT,It,...,IT)]
Ut,....UuT

Separate benefit term for Stage t:

Vi(xp) = Max) fe (U, X Xer1) + Max Fraa (Xga,Uggg e U e 1)
ut Ut 41, UT
Replace second term in brackets with definition for Vi1 (X¢,1):
Vi () = Max o (U % Xesa) +Vesa ()]
t

Substitute state equation for X¢+1:
Vi(x) = I\{ljax{ft[utvxt’gt(xt’ut' 1T+ Vi[9t (%, Ug, 1)T)
t

This equation is a backward recursion for Vi (x;) , initialized with terminal benefit
V1.a[9(X,ug, 1¢)]. Expression in braces depends only on ut [which is varied to find the

maximum], X; [the argument of Vi (x¢)], and It [the specified input].

At each stage find the u¢ that maximizes Vi (x;) for all possible xt.
Store the results (e.g. as a function or table) to obtain the desired decision rule u; (x;).

Computational Effort
The problem variables are frequently discretized into a finite number of values xtJ ,utJ : ItJ JJ=
1, 2, ...,L where L =number of discrete levels.

The solution to the discretized optimization problem can be found by exhaustive enumeration
(by comparing benefit-to-go for all possible u; (x;) combinations).

Dynamic programming is much more efficient than enumeration since it divides the original T
stage optimization problem into T smaller problems, one for each stage.

To compare computational effort of enumeration and dynamic programming assume:
o State dimension = M, Stages =T, Levels=L

« Equal number of levels for u; and x; at every stage
o All possible state transitions are permissible (i.e. L™ transitions at each stage)

Then total number of V; evaluations required is:

) . M(T+1
Exhaustive enumeration: L (T+1)

Dynamic Programming: TLZNI

For M =1, L =10, T = 10 the number of V; evaluations required is:
Exhaustive enumeration: 1011
Dynamic Programming: 103

Example 1: Reservoir Operations

Maximize benefits from water released from reservoir with variable inflows.
Stages correspond to 3 time periods (months, seasons, etc. T = 3).

§ Inflow It

Storage Xt

Release ut

State equation:
Xt+1:Xt—Ut+|t t:1,...,3

Total benefit from released water and final storage x4:
F(x1,Up,.ug) = fi(ug) + fo(uz) + f3(ug) +Va(xs)

Discretize all variables into consistent levels:
ut = {0,1,2} xt=9{0,1,2) 1={0,1) t=1,2,3

Inflows: I I I3
1 0 1

Terminal (outflow) benefits: V4(x4) = 0 for all x4 values

Benefits for each release:

Ut fi(up) fa(up) f3(uz)
0 0 0 0
1 3 4 1
2 2 5 3

Possible state transitions are derived from state equation, inputs, and permissible variable values:
Benefit is shown in parentheses after each feasible control value.

1(3)

1(3)

2(2) 0(0)

Stage 1

1

0(0)

Return

3

(4 2(3) 0(0)
2(5)
1(3) ‘ 0(0)

Stage 2

Control Benefit

Y4

1(1)

0(0) Control, benefit, and
return values

1(1)

1(1)

Stage 3

Solve series of 3 optimization problems defined by recursion equation for t = 3, 2, 1.

Start at last stage and move backward:

Stage 3: Maximize Vo(x») for each level of x3:
V3(xg) = Max{ f3(ug) +Va (xa)] = Max f3 (ug) +Va (x ~u3 + 13))]

Identify optimum u3(x3) values for each x3, V4(x4) specified as an input:
u3(xs) fa(us) + Va(xa)

X3
0

0
1

0
1

N

0
1

0
1

+
+

+
+

0
0

0
0

o

o

=0
=1= V3(Xx3) <«—— Optimum
=0
=1
=3= V3(X3) «—— Optimum
=1
=3= V3(X3) <«—— Optimum

Stage 2: Maximize Vy(xo) for each level of x5:
Va(xp) = '\ﬂax[fz (U2) +V3(x3)] = I\{Ijax[fz (U2) +V3(xp —Up +15)]
2 2

Identify optimum u»(x») value for each x», obtain V3(x3) from Stage 3:

X2

up(x2) fo(up) + V3(x3)

0 0 0 + 1 =1=Vy(x9) <«—— Optimum

1 0 0 + 3 =3
1 4 + 1 =5=Vyxp) <+— Optimum
2 0 0 + 3 =4
1 4 + 3 =7=Vy(x9) <«—— Optimum
2 5 + 1 =6

Stage 1: Maximize Vq(xy) for each level of x1:

Vi(x) = |VL|JTX[f1(U1) +Vy(Xp)] = “{'JTX[f1 () +Va (3 —ug + 1p)]

Identify optimum uq(x;) values for each x4, obtain Vy(xo) from Stage 2:
X ug(xa) fa(uz) + Va(xo)

0 0 0 + 5 =5=Vqxq) *— Optimum
1 3 + 1 =

1 0 0 + 7 =7=Vi(X1) <«—Optimum
1 3 + 5 =8
2 2 + 1 =3

2 1 3 + 7 =10=Vj(xg) +— Optimum
2 2 + 5 =7

The optimum u(x;) decision rules for t = 1, 2, 3 define a complete optimum decision strategy:

X1 up Xz Uz X3 U3
o 0 0 0 0 1
11 1 1 1 2
2 1 2 1 2 2

Optimum controls
and corresponding
return values

ofc
ofclo

N\

— 1
— 1
0

ORON0

Q.
ey
@o

Return function value

&

1
Optimal
control

Note that there is a path leaving every state value. The optimum paths give a strategy for
maximizing benefit-to-go from t onward, for any value of state x;.

Optimal benefit for each possible initial storage is V1(x1).

Example 2: Aqueduct diversions
Maximize benefits from water diverted from 3 locations along an aqueduct.
Here the stages correspond to aqueduct sections rather than time (T = 3).

State equation:
Xt+1:Xt_ut t:].,...,g

Inflow Outflow
X3

X1>m i () > >—>X4
T kl/ l V4(X4)
uq uo u3
f1(u1) fa(uy) fa(us)

Diversions & benefits

Total benefit from diverted water and outflow X4:
F (X1, Ug,.0U3) = fr(ug) + fa(up) + f3(uz) +Va(xs)

Discretize all variables into 3 levels:
ui ={0,1,2} x¢={0,1,2) t=1,2,3

Benefits for each diversion:

Ut f1(up) fa(up) f3(u3)
0 0 0 0
1 1 1 1
2 2 3 2

Terminal (outflow) benefits:

X4 Valxa)
0 1
1 0
2 0

Possible state transitions are derived from state equation, inputs, and permissible variable values:
Benefit is shown in parentheses after each feasible control value.

Return Control Benefit

‘ 9 ’ . g .
1 (1) 1(1) 1(1)
Control, benefit,
0(0) 0(0) 0 (0) and return values
L 1) states
2(3) 2(2)
00) ‘ 00) ‘

Stage 1 Stage 2 Stage 3

Solve series of 3 optimization problems defined by recursion equation for t = 3, 2, 1.
Start at last stage and move backward.

Stage 3: Maximize Vo(x») for each level of x3:
Vs (4g) = Max{ fy (ug) +Va (xa)] = Max{ f3(ug) + Vs (g — u)]

Use same procedure as in Example 1. Identify optimum ug(x3) value for each x3, V4(x4)
specified as an input. Resulting optimum controls and returns are:

X3 u3(xs) V3(xa)

0 0 1
1 1 2
2 2 3

Stage 2: Maximize Vy(xp) for each level of x5:

Va(xp) = hﬂgx[fg(u2)+V3(x3)]= '\ng[fz(uz) +V3(xp —)]

Use same procedure as in Example 1. Identify optimum uy(x») value for each xo, obtain V3(x3)
from Stage 3. Resulting optimum controls and returns are:

X2 Ua(x2) Va(x2)

0 0 1
1 Oorl 2
2 2 4

Stage 1: Maximize Vq(xy) for each level of x:

Vi(xq) = l\{lj?x[fl(ul) +V; (%)= '\ﬂi‘x[fl(ul) +V; (% —uy)]

Use same procedure as in Example 1. Identify optimum uq(xq) value for each x4, obtain V(xo)
from Stage 2. Resulting optimum controls and returns are:

X1 ui(x1) Vi(x1)

0 0 1
1 Oorl 2
2 0 4

The optimum ui(x¢) decision rules for t = 1, 2, 3 define a complete optimum decision strategy:

X1 Up X2 U2 X3 U3
0 O 0 0 0 O
1 Oorl 1 Oor1l 1 1
2 0 2 2 2 2

Optimal benefit for each possible inflow is V1(x1).

-0 @ ©

Optimum controls
and corresponding
return values

@@ DB

Return function value)
Optimal
control

