MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Civil and Environmental Engineering

1.731 Water Resource Systems

Lecture 4, General Optimization Concepts 2, Sept. 19, 2006

When is a **local** optimum also a **global** optimum?

A local maximum/minimum is a global maximum/minimum over the feasible region \mathcal{F} if:

- 1. The feasible region is **convex**
- 2. The objective function is **convex** (for a **maximum**) or **concave** (for a **minimum**) If the objective function is **strictly** convex or concave, the optimum is **unique**.

We need to **define terms** to apply this criterion.

Vector functions and derivatives:

Use vector notation used to represent multiple functions of multiple variables:

$$y = g(x) \rightarrow g_i(x_i) = g_i(x_1, x_2, ..., x_n)$$
 $i = 1, ..., m$

Selected derivatives of scalar and vector functions:

Gradient vector of scalar function $f(\underline{x})$:

$$\frac{\partial f(x_1, ..., x_n)}{\partial x_i}$$

Hessian matrix of scalar function f(x):

$$\frac{\partial f(x_1,...,x_n)}{\partial x_i \partial x_j} \text{ (symmetric)}$$

Jacobian matrix of vector function $g_{\underline{i}}(\underline{x})$

$$\frac{\partial g_i(x_1,...,x_n)}{\partial x_j}$$

Convex/concave functions

Convexity of functions can be defined **geometrically** or in terms of **Hessian**:

f(x) is a convex function if:

$$f[\alpha x_A + (1-\alpha)x_B] \le f[\alpha x_A] + (1-\alpha)f[x_B]$$

Function lies **below** line connecting 2 points

$$H_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_i}$$
 Hessian positive semi-definite $\forall x$

f(x) is a concave function if:

$$f[\alpha x_A + (1-\alpha)x_B] \ge f[\alpha x_A] + (1-\alpha)f[x_B]$$

Linear functions are **both** convex and concave!

Function lies above line connecting 2 points

$$H_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_i}$$
 Hessian negative semi-definite $\forall x$

Convex feasible region \mathcal{F} :

 $\boldsymbol{\mathcal{F}}$ is convex if line connecting any pair of points (x_A, x_B) lies completely inside region:

$$\alpha x_A + (1 - \alpha)x_B \in \mathcal{F}$$
 for all (x_A, x_B) in \mathcal{F} $\alpha \in [0, 1]$

Convex feasible region may be constructed from m constraints that meet following requirements:

All $g_i(x)$ are **convex** when $g_i(x) \le 0$ Or:

All $g_i(x)$ are **concave** when $g_i(x) \ge 0$

Feasible regions constructed from **linear** functions are **always convex**.

Summary:

A local maximum/minimum is a global maximum/minimum over the feasible region ${\bf \mathcal{F}}$ if:

- 1. The feasible region is **convex**
- 2. The objective function is **convex** (for a **maximum**) or **concave** (for a **minimum**) If the objective function is **strictly** convex or concave, the optimum is **unique**.

2

1D Examples:

1. Objective is **convex/concave**, feasible region is **convex** \rightarrow **local** maxima/minima **are global** maxima/minima.

2. Objective is **convex/concave**, feasible region is **not convex** \rightarrow **local** maxima/minima **are not** necessarily **global** maxima/minima.

3. Objective is **not convex/concave**, feasible region is **convex** \rightarrow **local** maxima/minima **are not** necessarily **global** maxima/minima.

