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When is a local optimum also a global optimum?

A local maximum/ minimum is a global maximum/minimum over the feasible region & if:

1. The feasible region is convex
2. The objective function is convex (for a maximum) or concave (for a minimum)
If the objective function is strictly convex or concave, the optimum is unique.

We need to define terms to apply this criterion.

Vector functions and derivatives:
Use vector notation used to represent multiple functions of multiple variables:
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Selected derivatives of scalar and vector functions:
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Jacobian matrix of vector function gj(X) ox
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Convex/concave functions
Convexity of functions can be defined geometrically or in terms of Hessian:

f(x) is a convex function if: f(x)4 Concave
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f(x) is a concave function if:

floxa +(1-a)xg]2 flaxpl+(1—a)f[xg] Linear functions are both
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Convex feasible region ¥:

& is convex if line connecting any pair of points (Xa, Xg) lies completely inside region:

axp+(l-a)xg € F forall(xp,Xg)in F «a €[0,1]
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Convex feasible region may be constructed from m constraints that meet following

requirements: ax) A

All gj(x) are convex when gj(x) <0
Or:

All gj(x) are concave when gj(X) > 0

Feasible regions constructed from linear
functions are always convex.

g(x) convex = £ convex

Summary:
A local maximum/ minimum is a global maximum/minimum over the feasible region ¥ if:
1. The feasible region is convex
2. The objective function is convex (for a maximum) or concave (for a minimum)
If the objective function is strictly convex or concave, the optimum is unique.



1D Examples:

1. Objective is convex/concave, feasible region is convex — local maxima/minima are global
maxima/minima.
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f(x) convex
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2. Objective is convex/concave, feasible region is not convex — local maxima/minima are not
necessarily global maxima/minima.
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3. Objective is not convex/concave, feasible region is convex — local maxima/minima are not
necessarily global maxima/minima.
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