#### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering

#### 1.731 Water Resource Systems

#### Lecture 5 & 6, Optimality Conditions, Sept. 21 & 26, 2006

How do we know when a particular **candidate solution**  $x^*$  is a local maximum?

Necessary (Kuhn-Tucker) conditions for a candidate solution  $x^*$  to be a local maximum are:

- 1. Feasibility
- 2. Stationarity
- 3. Inequality Lagrange multipliers
- 4. Curvature

#### **Preliminaries:**

 $x^*$  is a **local maximum** if  $F(x^*) \ge F(x)$  for all **feasible** x near  $x^*$ 

$$m_A^*$$
 active constraints at  $x^*$ :  
 $g_i(x^*) = 0$   $i \in \mathbb{C}$   $(x^*) =$  active set  
 $m_I^*$  inactive constraints at  $x^*$ :  
 $g_i(x^*) < 0$   $i \notin \mathbb{C}$   $(x^*)$   
 $m_A^* + m_I^* = m$ 

Form an  $m_A^*$  by *n* matrix with rows the **gradient vectors**  $\partial g_i(x^*)/\partial x_j$  of the  $m_A^*$  constraint functions active at  $x^*$ . If *Rank*  $[\partial g_i(x^*)/\partial x_j] = \rho_A^* < m_A^*$  the problem is **degenerate**. Otherwise  $\rho_A^* = m_A^*$  and the problem is **non-degenerate**.

The set of  $m_A^*$  constraints active at  $x^*$  define an  $n - \rho_A^* \ge 0$  dimensional constraint surface in the *n* dimensional decision space.

Any  $\rho_A^*$  linearly independent gradient vectors form a basis for a  $\rho_A^*$  dimensional gradient space. Any  $n - \rho_A^*$  tangent vectors  $p_i$   $(i = 1, ..., n - \rho_A^*)$  normal to all the gradient vectors form a basis for an  $n - \rho_A^*$  dimensional tangent space.

Orthogonality condition satisfied by **any** vector  $p_i$  in tangent space:

$$p_i \perp \frac{\partial g_j(x^*)}{\partial x_i} \rightarrow p_i \frac{\partial g_j(x^*)}{\partial x_i} = 0$$
  $i \in \mathbf{C}(x^*)$ 

The tangent space can be viewed as a plane that intersects the  $n - \rho_A^*$  constraint surface at  $x^*$ . This plane approximates the constraint surface for x sufficiently close to  $x^*$ . Constraint gradient space



## **Statement of Necessary Conditions for a Local Maximum: 1. Feasibility**

 $x^*$  must lie in the feasible region  $\mathcal{F}$ :

 $g_i(x^*) = 0$  i = 1,...r $g_i(x^*) \le 0$  i = r+1, ..., m

#### 2. Stationarity

Objective function gradient at  $x^*$  must lie in the constraint gradient space (i.e. it has no projection onto the constraint tangent plane).

For non-degenerate problems this implies:

$$\frac{\partial F(x^*)}{\partial xj} = \lambda_i \frac{\partial g_i(x^*)}{\partial xj} \qquad i \in \boldsymbol{\mathcal{C}}(x^*)$$

The  $\lambda_i$  are Lagrange multipliers for the active constraints at  $x^*$ .

If  $x^*$  is a **local maximum** this system of *n* linear equations in the  $\rho_A^* = m_A^*$  unknown  $\lambda_i$ 's must have a solution (i.e. it must be **consistent**).

For degenerate problems include only  $\rho_A^* < m_A^*$  linearly independent constraints and set  $\lambda_i = 0$  for the remaining redundant constraints

Adopt convention that  $\lambda_i = 0$  for inactive constraints as well as redundant constraints so the stationarity condition can include all constraints:

$$\frac{\partial F(x^*)}{\partial x_j} = \lambda_i \frac{\partial g_i(x^*)}{\partial x_j}$$

$$\lambda_i g_i(x^*) = 0$$
 for each  $i \in \mathbf{C}(x^*)$  (no sum over *i*)

Define Lagrangian function to be:

$$L(x^*,\lambda) = F(x^*) - \lambda_i g_i(x^*)$$

Then stationarity condition requires:

$$\frac{\partial L(x^*,\lambda)}{\partial x_j} = 0$$

### 3. Inequality Lagrange multipliers

If  $x^*$  is a **local maximum** then the Lagrange multipliers for all **inequality constraints** active at  $x^*$  must be non-negative:  $\lambda_i \ge 0$ ,  $i \in \mathbf{C}(x^*)$ .

## 4. Curvature

:

**Projection** of Lagrangian onto the constraint tangent space must have a **negative semi-definite Hessian**.

Projection operator is an *n* by  $n - \rho_A^*$  matrix  $Z_{ik}$  with columns composed of the  $n - \rho_A^*$  constraint tangent space basis vectors. These basis vectors are linearly independent solutions  $p_i$  of:

$$p_{i} \perp \frac{\partial g_{i}(x^{*})}{\partial x_{j}} \rightarrow p_{i} \frac{\partial g_{j}(x^{*})}{\partial x_{i}} = 0$$
$$Z_{ik} = \begin{bmatrix} p_{i}^{1} & \dots & p_{i}^{n-\rho_{A}^{*}} \end{bmatrix}$$

Hessian of the projected Lagrangian is  $W_{kl}$ :

$$W_{kl} = \frac{\partial^2 L(x^*, \lambda)}{\partial x_i \partial x_i} Z_{ik} Z_{lj} = 0$$

If  $x^*$  is a local maximum,  $W_{kl}$  must be negative semidefinite  $\rightarrow W_{kl} \leq 0$ .

# **Example:**

Consider an two-dimensional example with 2 inequality constraints and 3 candidate solutions  $x_A^* = (0,2), \ x_B^* = (0,1), \ x_C^* = (1,2)$ 



Gradients are:

\_

 $\partial F$ 

Lagrangian and its Hessian are:

$$\frac{\partial F}{\partial x_1} = -2x_1 \qquad \frac{\partial F}{\partial x_2} = -2x_2$$

$$\frac{\partial g_1}{\partial x_1} = 2x_1 \qquad \frac{\partial g_1}{\partial x_2} = -1$$

$$\frac{\partial g_2}{\partial x_1} = 0 \qquad \frac{\partial g_2}{\partial x_2} = 1$$

$$L(x,\lambda) = -x_1^2 - x_2^2 - \lambda_1[x_1^2 - x_2 + 1] + \lambda_2[x_2 - 2]$$

$$\frac{\partial L(x,\lambda)}{\partial x_i \partial x_j} = \begin{bmatrix} -2 - 2\lambda_1 & 0\\ 0 & -2 \end{bmatrix}$$

Evaluate gradients at candidate solutions

$$\frac{\partial F(x^*)}{\partial x_j} \quad \frac{\partial g_1(x^*)}{\partial x_j} \quad \frac{\partial g_2(x^*)}{\partial x_j} \quad m_A^* \quad \rho_A^* \quad n - \rho_A^* \quad Z_{ij}}{x_A^* = (0,2)} \quad \begin{bmatrix} 0 \\ -4 \end{bmatrix} \quad \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad 1 \quad 1 \quad 1 \quad \begin{bmatrix} a \\ 0 \end{bmatrix} \\ x_B^* = (0,1) \quad \begin{bmatrix} 0 \\ -2 \end{bmatrix} \quad \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad 1 \quad 1 \quad 1 \quad \begin{bmatrix} a \\ 0 \end{bmatrix} \\ x_C^* = (1,2) \quad \begin{bmatrix} -2 \\ -4 \end{bmatrix} \quad \begin{bmatrix} 2 \\ -1 \end{bmatrix} \quad \begin{bmatrix} 2 \\ -1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad 2 \quad 2 \quad 0 \quad \text{None}$$

Check necessary conditions for a local maximum at each  $x^*$ :

## 1. Feasibility:

All 3 candidate solutions are feasible.

## 2. Stationarity

Consider for all active constraints:

|                 | Consistent ? | $\lambda_1$ | $\lambda_2$ | $W_{kl}$    |
|-----------------|--------------|-------------|-------------|-------------|
| $x_A^* = (0,2)$ | Yes          | 0           | -4          | $-2a^2 < 0$ |
| $x_B^* = (0,1)$ | Yes          | +2          | 0           | $-6a^2 < 0$ |
| $x_C^* = (1,2)$ | Yes          | -1          | -5          | None        |

# 3. Inequality Lagrange Multipliers

Only  $x_B^*$  has non-negative Lagrange multipliers for active inequalities.

# 4. Curvature:

Both  $x_A^*$  and  $x_B^*$  satisfy the curvature condition. This condition does not apply to  $x_C^*$ .

## **Example Summary:**

Only  $x_B^*$  is a **local maximum**.since it is the only solution that satisfies all 4 conditions. For this problem  $x_B^*$  is also a **global maximum** (why?)

## **Quick Outline of Derivation:**

Derivation of necessary conditions is based on **Taylor series approximations** of  $g_i(x)$  and F(x):

An **infinitesimal feasible arc** from  $x^*$  to x lies wholly inside the feasible region.

Let  $\theta$  be **distance** along this arc from  $x^*$  to x.  $x^* = x(0)$   $x = x(\theta)$ The vector tangent to this arc at x(0) is  $\partial x_i(0) / \partial \theta$ .

Infinitesimal arcs originating at x(0) are feasible [i.e.  $g_i[x(\theta)] = 0$ ] if the corresponding  $\partial x_j(0)/\partial \theta$  lies in the **constraint tangent space**. To see this use a Taylor series expansion of

$$g_i[x(\theta)]$$
:

$$g_i[x(\theta)] = g_i[x(0)] + \frac{\partial g_i[x(0)]}{\partial x_j} \frac{\partial x_j(0)}{\partial \theta} \theta + \dots = 0 \qquad i \in \boldsymbol{\mathcal{C}} (x^*)$$

The first term on the right is zero because constraint *i* is active at  $x^* = x(0)$ . The second term on the right is zero since  $\partial x_j(0)/\partial \theta$  is orthogonal to all the active constraint vectors if it lies in constraint tangent space.

The Taylor series expansion of  $F[x(\theta)]$  along an infinitesimal arc is:

$$F[x(\theta)] = F[x(0)] + \frac{\partial F[x(0)]}{\partial \theta} \theta + \frac{\partial^2 F[x(0)]}{\partial \theta^2} \theta^2 + \dots =$$
  
$$F[x(\theta)] = F[x^*] + \frac{\partial F[x^*]}{\partial x_i} \frac{\partial x_i(0)}{\partial \theta} \theta + \frac{\partial^2 F[x^*]}{\partial x_i \partial x_j} \frac{\partial x_i(0)}{\partial \theta} \frac{\partial x_j(0)}{\partial \theta} \theta^2 + \dots$$

If  $x^*$  is a local maximum  $F(x) = F[x(\theta)]$  must be  $\leq F[x(0)] = F(x^*)$  for all values of  $\theta$  along the arc. This implies:

1). 
$$\frac{\partial F[x(0)]}{\partial \theta} = \frac{\partial F[x^*]}{\partial x_j} \frac{\partial x_j(0)}{\partial \theta} = 0$$

2). 
$$\frac{\partial^2 F[x(0)]}{\partial \theta^2} = \frac{\partial^2 F[x^*]}{\partial x_i \partial x_j} \frac{\partial x_i(0)}{\partial \theta} \frac{\partial x_j(0)}{\partial \theta} \le 0$$

The stationarity condition follows from 1). and the curvature condition follows from 2), if the requirement that  $\partial x_i(0)/\partial \theta$  lies in the constraint tangent space and the definition of the Lagrangian are invoked.

The stationarity condition takes care of feasible arcs that lie in the **tangent space**, which are the only directions that are feasible for **equality** constraints.

If the constraint is an **inequality** the feasible arc may also point **into the feasible region**, away from the tangent space. Directions into the feasible region are defined by:: 2r = (0) 2 = 5 = (0)

3). 
$$\frac{\partial x_j(0)}{\partial \theta} \frac{\partial g_i[x(0)]}{\partial x_j} < 0 \quad \text{for } i \text{ an inequality constraint } \in \boldsymbol{\mathcal{C}} (x^*)$$

The objective function cannot increase along this feasible arc if  $x^*$  is a local maximum. So:

4). 
$$\frac{\partial F[x(0)]}{\partial x_j} \frac{\partial x_j(0)}{\partial \theta} \le 0$$
 for *i* an **inequality** constraint  $\in \mathbf{C}(x^*)$ 

The inequality Lagrange multiplier condition follows from 3) and 4).