MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Civil and Environmental Engineering

1.731 Water Resource Systems

Lecture 5 \& 6, Optimality Conditions, Sept. 21 \& 26, 2006

How do we know when a particular candidate solution x^{*} is a local maximum?
Necessary (Kuhn-Tucker) conditions for a candidate solution x^{*} to be a local maximum are:

1. Feasibility
2. Stationarity
3. Inequality Lagrange multipliers
4. Curvature

Preliminaries:

x^{*} is a local maximum if $F\left(x^{*}\right) \geq F(x)$ for all feasible x near x^{*}

$$
\begin{array}{lll}
m_{A}^{*} \text { active constraints at } x^{*}: & g_{i}\left(x^{*}\right)=0 & i \in \boldsymbol{\mathcal { C }}\left(x^{*}\right)=\text { active set } \\
m_{I}^{*} \text { inactive constraints at } x^{*}: & g_{i}\left(x^{*}\right)<0 & i \notin \boldsymbol{C}\left(x^{*}\right) \\
m_{A}^{*}+m_{I}^{*}=m & &
\end{array}
$$

Form an m_{A}^{*} by n matrix with rows the gradient vectors $\partial g_{i}\left(x^{*}\right) / \partial x_{j}$ of the m_{A}^{*} constraint functions active at x^{*}. If $\operatorname{Rank}\left[\partial g_{i}\left(x^{*}\right) / \partial x_{j}\right]=\rho_{A}^{*}<m_{A}^{*}$ the problem is degenerate. Otherwise $\rho_{A}^{*}=m_{A}^{*}$ and the problem is non-degenerate.

The set of m_{A}^{*} constraints active at x^{*} define an $n-\rho_{A}^{*} \geq 0$ dimensional constraint surface in the n dimensional decision space.

Any ρ_{A}^{*} linearly independent gradient vectors form a basis for a ρ_{A}^{*} dimensional gradient space. Any $n-\rho_{A}^{*}$ tangent vectors $p_{i}\left(i=1, \ldots, n-\rho_{A}^{*}\right)$ normal to all the gradient vectors form a basis for an $n-\rho_{A}^{*}$ dimensional tangent space.

Orthogonality condition satisfied by any vector p_{i} in tangent space:

$$
p_{i} \perp \frac{\partial g_{j}\left(x^{*}\right)}{\partial x_{i}} \rightarrow p_{i} \frac{\partial g_{j}\left(x^{*}\right)}{\partial x_{i}}=0 \quad i \in \boldsymbol{C}\left(x^{*}\right)
$$

The tangent space can be viewed as a plane that intersects the $n-\rho_{A}^{*}$ constraint surface at x^{*}. This plane approximates the constraint surface for x sufficiently close to x^{*}.

Statement of Necessary Conditions for a Local Maximum:

1. Feasibility

x^{*} must lie in the feasible region \mathcal{F} :

$$
\begin{array}{ll}
g_{i}\left(x^{*}\right)=0 & i=1, \ldots r \\
g_{i}\left(x^{*}\right) \leq 0 & i=r+1, \ldots, m
\end{array}
$$

2. Stationarity

Objective function gradient at x^{*} must lie in the constraint gradient space (i.e. it has no projection onto the constraint tangent plane).

For non-degenerate problems this implies:

$$
\frac{\partial F\left(x^{*}\right)}{\partial x j}=\lambda_{i} \frac{\partial g_{i}\left(x^{*}\right)}{\partial x j} \quad i \in \boldsymbol{C}\left(x^{*}\right)
$$

The λ_{i} are Lagrange multipliers for the active constraints at x^{*}.
If x^{*} is a local maximum this system of n linear equations in the $\rho_{A}^{*}=m_{A}^{*}$ unknown λ_{i} 's must have a solution (i.e. it must be consistent).

For degenerate problems include only $\rho_{A}^{*}<m_{A}^{*}$ linearly independent constraints and set $\lambda_{i}=0$ for the remaining redundant constraints

Adopt convention that $\lambda_{i}=0$ for inactive constraints as well as redundant constraints so the stationarity condition can include all constraints:

$$
\begin{aligned}
& \frac{\partial F\left(x^{*}\right)}{\partial x_{j}}=\lambda_{i} \frac{\partial g_{i}\left(x^{*}\right)}{\partial x j} \\
& \lambda_{i} g_{i}\left(x^{*}\right)=0 \quad \text { for each } i \in \boldsymbol{\mathcal { C }}\left(x^{*}\right)(\text { no sum over } i)
\end{aligned}
$$

Define Lagrangian function to be:

$$
L\left(x^{*}, \lambda\right)=F\left(x^{*}\right)-\lambda_{i} g_{i}\left(x^{*}\right)
$$

Then stationarity condition requires:

$$
\frac{\partial L\left(x^{*}, \lambda\right)}{\partial x_{j}}=0
$$

3. Inequality Lagrange multipliers

If x^{*} is a local maximum then the Lagrange multipliers for all inequality constraints active at x^{*} must be non-negative: $\lambda_{i} \geq 0, i \in \boldsymbol{\mathcal { C }}\left(x^{*}\right)$.

4. Curvature

Projection of Lagrangian onto the constraint tangent space must have a negative semidefinite Hessian.

Projection operator is an n by $n-\rho_{A}^{*}$ matrix $Z_{i k}$ with columns composed of the $n-\rho_{A}^{*}$ constraint tangent space basis vectors. These basis vectors are linearly independent solutions p_{i} of:

$$
\begin{aligned}
& p_{i} \perp \frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{j}} \rightarrow p_{i} \frac{\partial g_{j}\left(x^{*}\right)}{\partial x_{i}}=0 \\
& Z_{i k}=\left[\begin{array}{lll}
p_{i}^{1} & \cdots & p_{i}^{n-\rho_{A}^{*}}
\end{array}\right]
\end{aligned}
$$

Hessian of the projected Lagrangian is $W_{k l}$:

$$
W_{k l}=\frac{\partial^{2} L\left(x^{*}, \lambda\right)}{\partial x_{j} \partial x_{i}} Z_{i k} Z_{l j}=0
$$

If x^{*} is a local maximum, $W_{k l}$ must be negative semidefinite $\rightarrow W_{k l} \leq 0$.

Example:

Consider an two-dimensional example with 2 inequality constraints and 3 candidate solutions
$x_{A}^{*}=(0,2), x_{B}^{*}=(0,1) ., x_{C}^{*}=(1,2)$

Gradients are:
$\frac{\partial F}{\partial x_{1}}=-2 x_{1} \quad \frac{\partial F}{\partial x_{2}}=-2 x_{2}$
$\frac{\partial g_{1}}{\partial x_{1}}=2 x_{1} \quad \frac{\partial g_{1}}{\partial x_{2}}=-1$
$\frac{\partial g_{2}}{\partial x_{1}}=0 \quad \frac{\partial g_{2}}{\partial x_{2}}=1$
Evaluate gradients at candidate solutions

| | $\partial F\left(x^{*}\right) / \partial x_{j}$ | $\partial g_{1}\left(x^{*}\right) / \partial x_{j}$ | $\partial g_{2}\left(x^{*}\right) / \partial x_{j}$ | m_{A}^{*} | ρ_{A}^{*} | $n-\rho_{A}^{*}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$Z_{i j}$

Check necessary conditions for a local maximum at each x^{*} :

1. Feasibility:

All 3 candidate solutions are feasible.

2. Stationarity

Consider for all active constraints:

	Consistent $?$	λ_{1}	λ_{2}	$W_{k l}$
$x_{A}^{*}=(0,2)$	Yes	0	-4	$-2 a^{2}<0$
$x_{B}^{*}=(0,1)$	Yes	+2	0	$-6 a^{2}<0$
$x_{C}^{*}=(1,2)$	Yes	-1	-5	None

3. Inequality Lagrange Multipliers

Only x_{B}^{*} has non-negative Lagrange multipliers for active inequalities.

4. Curvature:

Both x_{A}^{*} and x_{B}^{*} satisfy the curvature condition. This condition does not apply to x_{C}^{*}.

Example Summary:

Only x_{B}^{*} is a local maximum.since it is the only solution that satisfies all 4 conditions. For this problem x_{B}^{*} is also a global maximum (why?)

Quick Outline of Derivation:

Derivation of necessary conditions is based on Taylor series approximations of $g_{i}(x)$ and $F(x)$:
An infinitesimal feasible arc from x^{*} to x lies wholly inside the feasible region.
Let θ be distance along this arc from x^{*} to x.

$$
x^{*}=x(0) \quad x=x(\theta)
$$

The vector tangent to this arc at $x(0)$ is $\partial x_{j}(0) / \partial \theta$.

Infinitesimal arcs originating at $x(0)$ are feasible [i.e. $\left.g_{i}[x(\theta)]=0\right]$ if the corresponding $\partial x_{j}(0) / \partial \theta$ lies in the constraint tangent space. To see this use a Taylor series expansion of $g_{i}[x(\theta)]:$
$g_{i}[x(\theta)]=g_{i}[x(0)]+\frac{\partial g_{i}[x(0)]}{\partial x_{j}} \frac{\partial x_{j}(0)}{\partial \theta} \theta+\ldots=0 \quad i \in \boldsymbol{C}\left(x^{*}\right)$
The first term on the right is zero because constraint i is active at $x^{*}=x(0)$.
The second term on the right is zero since $\partial x_{j}(0) / \partial \theta$ is orthogonal to all the active constraint vectors if it lies in constraint tangent space.

The Taylor series expansion of $F[x(\theta)]$ along an infinitesimal arc is:
$F[x(\theta)]=F[x(0)]+\frac{\partial F[x(0)]}{\partial \theta} \theta+\frac{\partial^{2} F[x(0)]}{\partial \theta^{2}} \theta^{2}+\ldots=$
$F[x(\theta)]=F\left[x^{*}\right]+\frac{\partial F\left[x^{*}\right]}{\partial x_{i}} \frac{\partial x_{i}(0)}{\partial \theta} \theta+\frac{\partial^{2} F\left[x^{*}\right]}{\partial x_{i} \partial x_{j}} \frac{\partial x_{i}(0)}{\partial \theta} \frac{\partial x_{j}(0)}{\partial \theta} \theta^{2}+\ldots$
If x^{*} is a local maximum $F(x)=F[x(\theta)]$ must be $\leq F[x(0)]=F\left(x^{*}\right)$ for all values of θ along the arc. This implies:
1). $\frac{\partial F[x(0)]}{\partial \theta}=\frac{\partial F\left[x^{*}\right]}{\partial x_{j}} \frac{\partial x_{j}(0)}{\partial \theta}=0$
2). $\quad \frac{\partial^{2} F[x(0)]}{\partial \theta^{2}}=\frac{\partial^{2} F\left[x^{*}\right]}{\partial x_{i} \partial x_{j}} \frac{\partial x_{i}(0)}{\partial \theta} \frac{\partial x_{j}(0)}{\partial \theta} \leq 0$

The stationarity condition follows from 1). and the curvature condition follows from 2), if the requirement that $\partial x_{i}(0) / \partial \theta$ lies in the constraint tangent space and the definition of the Lagrangian are invoked.

The stationarity condition takes care of feasible arcs that lie in the tangent space, which are the only directions that are feasible for equality constraints.

If the constraint is an inequality the feasible arc may also point into the feasible region, away from the tangent space. Directions into the feasible region are defined by::

$$
\text { 3). } \frac{\partial x_{j}(0)}{\partial \theta} \frac{\partial g_{i}[x(0)]}{\partial x_{j}}<0 \quad \text { for } i \text { an inequality constraint } \in \boldsymbol{\mathcal { C }}\left(x^{*}\right)
$$

The objective function cannot increase along this feasible arc if x^{*} is a local maximum. So:
4). $\frac{\partial F[x(0)]}{\partial x_{j}} \frac{\partial x_{j}(0)}{\partial \theta} \leq 0 \quad$ for i an inequality constraint $\in \boldsymbol{\mathcal { C }}\left(x^{*}\right)$

The inequality Lagrange multiplier condition follows from 3) and 4).

