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Linear Programming Problems (LPP) 
Objectives and constraints are all linear functions of decision variables: 
 
 
 
 
 
 
 
 
 
Total constraints = mT +mN = m 
 
Optimal Solutions of Linear Programming Problems: 
For LPP: 
Linear objective and constraint functions are both convex and concave so: 

• Feasible region F  for LP is convex (i.e. constructed from convex functions gi(x)≤0) 
• Objective function for LP is concave 

Therefore: 
A candidate LPP solution x*  that is a local maximum is also a global maximum. 
 
To check whether x*  is a local/global maximum use necessary conditions: 
 
Focus on constraints that are active at x*: 
 
  
 

Row i of *
AG  = Aij if i is a technological constraint 

Row i of  = b*
Aib i if i is a technological constraint 

Row i of *
AG  = -δij if i is a non-negativity constraint 

Row i of  = 0 if i is a non-negativity constraint *
Aib
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1. Feasibility 
x* is chosen to be feasible 

 
2. Stationarity 
If x* is a local maximum then:  
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For LPP stationarity condition reduces to a set of linear equations in unknown λi’s 

  jAiji cG =*λ

The stationarity condition is satisfied if this set of linear equations is consistent so: 
][][ ***

jAijAij cGRankGRank ==ρ  

 
There are four ways this can occur: 

1). Corner solution: x* lies at intersection of n linearly independent constraints. 
 nmA == **ρ . 

2). Trivial interior solution: occurs only if cj =0. 
 0** == Amρ  

3). Non-corner boundary solution: x* lies along a boundary but not at a corner. 
 nmA <= **ρ  

4). Degenerate solution: Constraints are linearly dependent (i.e. number of constraints 
 exceeds rank of ). *

AijG

 **
Am<ρ  

   
3. Inequality Lagrange multiplier 
If x* is a local maximum then:  
 *)(                               0 xii C∈≥λ  
In case 1) above there will be only one solution that satisfies this condition. 
 
4. Curvature 
In LLP curvature condition applies for any x* since Lagrangian Hessian is always zero. 
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Crop Allocation Example 
Problem is to maximize revenue from two crops, given constraints on available land and water 
and on minimum total crop grown. 
 
Decision variables: 

x1 = mass of crop 1 grown (tonnes = 103 kg)  
x2 = mass of crop 2 grown (tonnes = 103 kg) 
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Objective, right-hand side, and technological coefficients: 
 cj   -- Crop values  ($/tonne) 
 b1   -- Water available (m3/season) 
 b2   -- Land available (ha) 

A1j -- Water requirements (103 m3/(season tonne) )  = (unit water requirement in 10-1 
m/season)/(yield in tonnes/ha) 

 A2j --  Land requirement (ha/tonne) = (yield in tonnes/ha)-1
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Pairs of constraints active at the 5 corners of the feasible solution are all linearly independent 
(i.e. corresponding  have rank *

AijG 2** === nmAρ ).   

So  is consistent and stationarity condition is satisfied at each of these corner 

points. 
jAiji cG =*λ

 
There are no interior, non-corner boundary, or degenerate solutions for this example. 
So we need only consider the Lagrange multipliers at the 5 corner solutions: 
Candidate Active     Lagrange Multipliers 
Solution Constraints  
(25, 0)  3, 5  λ3 = -6    λ5 = -5 
(52, 0)  5, 1  λ1 = +3      λ5 = -8 
(44, 16) 1, 2  λ1 = +1/3   λ2 = +16/3 
(0, 38)  2, 4  λ2 = +11/2  λ4 = -1/2 
(0, 25)  4, 3  λ4 = -11     λ3 = +5 
 
x* = (44, 16) is the local/global maximum since it is the only corner solution with positive 
Lagrange multipliers for all active constraints. 
 
In this problem the optimum crop allocation mixes Crop 1 and Crop 2 in a way that uses all 
available land and water while giving maximum revenue. 
 
It is possible to generate a non-corner (non-unique) boundary solution to this problem by 
changing the objective function to F(x) = 6x1 + 12x2.  Then nmA <= **ρ   

( 2,1,1 ** === nmAρ ). The objective function contours are parallel to g1(x) and any feasible 

solution along g1(x) is local/global maximum. 
 
It is possible to generate a degenerate solution to this problem by changing the water constraint 
to g1(x) = 2x1 + x2.≤ 152. Then **

Am<ρ  ( )3,2,2 ** === Amnρ  at the new corner (76, 0). 

There is not a unique set of λi’s satisfying stationarity condition at this corner. 
So the inequality Lagrange multiplier condition cannot be checked.  
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