MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering

1.731 Water Resource Systems

Lecture 7, Linear Programming Overview, Sept. 28, 2006

Linear Programming Problems (LPP)

Objectives and constraints are all linear functions of decision variables:

Maximize $F(x_1, x_2, ..., x_n) = c_j x_j$ such that : $g_{Ti}(x) = A_{ij} x_j \le b_i$ $i = 1, ..., m_T$ $g_{Ni}(x) = -x_{i-m} \le 0$ $i = m_T + 1, ..., m_T + m_N$ Non-negativity constraints

Total constraints = $m_T + m_N = m$

Optimal Solutions of Linear Programming Problems:

For LPP:

Linear objective and constraint functions are both **convex** and **concave** so:

- Feasible region \mathcal{F} for LP is **convex** (i.e. constructed from convex functions gi(x) ≤ 0)
- Objective function for LP is **concave**

Therefore:

A candidate LPP solution x^* that is a **local maximum** is also a **global maximum**.

To check whether x^* is a local/global maximum use **necessary conditions**:

Focus on constraints that are **active** at *x**:

$$G_{Aij}^* x_j^* - b_{Ai}^* = 0$$
 $i \in \mathcal{C}(x^*)$

Row *i* of $G_A^* = A_{ij}$ if *i* is a technological constraint

Row *i* of $b_{Ai}^* = b_i$ if *i* is a technological constraint

Row *i* of $G_A^* = -\delta_{ij}$ if *i* is a non-negativity constraint

Row *i* of $b_{Ai}^* = 0$ if *i* is a non-negativity constraint

1. Feasibility

 x^* is chosen to be feasible

2. Stationarity

If x^* is a local maximum then:

$$\frac{\partial F(x^*)}{\partial x_j} = \frac{\partial [c_j x_j]}{\partial x_j} = c_j = \lambda_i \frac{\partial [G_{Aij}^* x_j + b_{Ai}^*]}{\partial x_j} = \lambda_i G_{Aij}^*$$

For LPP stationarity condition reduces to a set of **linear equations** in unknown λ_i 's

$$\lambda_i G_{Aij}^* = c_j$$

The stationarity condition is satisfied if this set of linear equations is **consistent** so: $\rho^* = Rank[G^*_{Aij}] = Rank[G^*_{Aij}|c_j]$

There are four ways this can occur:

- 1). Corner solution: x^* lies at intersection of n linearly independent constraints. $\rho^* = m_A^* = n$.
- 2). Trivial interior solution: occurs only if $c_i = 0$.

$$\rho^* = m_A^* = 0$$

- 3). Non-corner boundary solution: x^* lies along a boundary but not at a corner. $\rho^* = m_A^* < n$
- 4). **Degenerate solution**: Constraints are linearly dependent (i.e. number of constraints exceeds rank of G_{Aii}^*).

$$\rho^* < m_A^*$$

3. Inequality Lagrange multiplier

If x^* is a local maximum then:

$$\lambda_i \ge 0 \qquad \qquad i \in \mathcal{C}(x^*)$$

In case 1) above there will be only one solution that satisfies this condition.

4. Curvature

In LLP curvature condition applies for any x^* since Lagrangian Hessian is always zero.

$$W_{kl} = \frac{\partial^2 L(x^*, \lambda)}{\partial x_j \partial x_k} Z_{ik} Z_{lj} = \frac{\partial^2 [c_j x_j - \lambda_i (G_{Aij}^* x_j - b_{Ai}^*)]}{\partial x_j \partial x_k} \bigg|_{x=x^*} Z_{ik} Z_{lj} = 0$$

Crop Allocation Example

Problem is to maximize revenue from two crops, given constraints on available land and water and on minimum total crop grown.

Decision variables:

$x_1 = \text{mass of crop 1 grown (tonnes = 103 kg)}$				
$x_2 = \text{mass of crop 2 grown (tonnes = 103 kg)}$				
Water constraint (10^3 m^3 /season)				
Land constraint (ha)				
Minimum production constraint (tonnes)				
x_1 non - negativity constraint				
x_2 non - negativity constraint				

Objective, right-hand side, and technological coefficients:

- c_i -- Crop values (\$/tonne)
- *b*₁ -- Water available (m3/season)
- *b*₂ -- Land available (ha)
- A_{1j} -- Water requirements (10³ m³/(season tonne)) = (unit water requirement in 10⁻¹ m/season)/(yield in tonnes/ha)
- A_{2j} -- Land requirement (ha/tonne) = (yield in tonnes/ha)⁻¹

Pairs of constraints active at the 5 corners of the feasible solution are all linearly independent (i.e. corresponding G_{Aij}^* have rank $\rho^* = m_A^* = n = 2$).

So $\lambda_i G_{Aij}^* = c_j$ is consistent and **stationarity condition is satisfied** at each of these corner points.

There are no interior, non-corner boundary, or degenerate solutions for this example. So we need only consider the Lagrange multipliers at the 5 corner solutions:

Candidate Active Solution Constrain		Lagrange Multipliers	
(25, 0)	3, 5	$\lambda_3 = -6$	$\lambda_5 = -5$
(52, 0)	5, 1	$\lambda_1 = +3$	$\lambda_5 = -8$
(44, 16)	1, 2	$\lambda_1 = +1/3$	$\lambda_2 = +16/3$
(0, 38)	2,4	$\lambda_2 = +11/2$	$\lambda_4 = -1/2$
(0, 25)	4, 3	$\lambda_4 = -11$	$\lambda_3 = +5$

 $x^* = (44, 16)$ is the **local/global maximum** since it is the only corner solution with positive Lagrange multipliers for **all** active constraints.

In this problem the optimum crop allocation mixes Crop 1 and Crop 2 in a way that uses all available land and water while giving maximum revenue.

It is possible to generate a **non-corner (non-unique) boundary solution** to this problem by changing the objective function to $F(x) = 6x_1 + 12x_2$. Then $\rho^* = m_A^* < n$

 $(\rho^* = 1, m_A^* = 1, n = 2)$. The objective function contours are parallel to $g_1(x)$ and any feasible solution along $g_1(x)$ is local/global maximum.

It is possible to generate a **degenerate solution** to this problem by changing the water constraint to $g_1(x) = 2x_1 + x_2 \le 152$. Then $\rho^* < m_A^*$ ($\rho^* = 2, n = 2, m_A^* = 3$) at the new corner (76, 0). There is not a unique set of λ_i 's satisfying stationarity condition at this corner. So the inequality Lagrange multiplier condition cannot be checked.