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1 Introduction

In this class, we will discuss algorithms for finding the roots of non-linear algebraic equa-
tions. The problem we are dealing with here can be stated mathematically as follows:
Find values of x such that the non-linear equation, f(z) = 0 is satisfied. When we say
f(z) is a non-linear function of x, it means that f(x) can not be written as ax + 3, where
« and [ are constants. When we say that f(x) is an algebraic equation, it means that
f(z) does not involve any differentials of the form d"y/dxz™. A simple example is that of
the familiar quadratic equation where f(z) = az? + bxr + ¢ = 0. Similarly, x — sin(x) = 0,
x4+ 3523 + 2022 + 2 — 3 = 0 etc. are all examples of non-linear equations. Evidently, the
roots can not be obtained through analytical means except for a few simple cases. So our
aim is to learn numerical methods which will evaluate the roots approximately.

There are many ways to locate an interval a < x < b where the curve defined by
f(z) = 0 intersects the x axis (the = coordinate of the point of intersection is a root of the
equation f(x) = 0). One way is to simply plot the function in a given interval. Another
way is to find two points on the x axis, say x = a and x = b, such that the condition
f(a) = f(b) < 0 is satisfied. i.e., the function changes sign as we move along the = axis
from 2 = a to x = b (Let’s assume that a < b. Moreover, we restrict our attention to
real roots.). This implies, for continous functions, that the graph (curve) of the function
y = f(z) intersects the x axis at least once between x = a and z = b.

Example 1.: For instance, let f(z) = z * sin(mx) — exp(—z). Since f(0) < 0 and
f(2/3) > 0 and since f(x) is continuous in this interval, there has to be a root between
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0 and 2/3. Instead, we can simply plot the function using some mathematical software
shown in Figure 1.

2 Bisection Methods:

We can pursuse the above idea a little further by narrowing the interval until the interval
within which the root lies is small enough. For the function in Example 1, we can bisect
the interval [0,2/3] to two subintervals, [0,1/3] and [1/3,2/3]. Now, it is easily verified
that [0,1/3] and [1/3,2/3]. Now, it is easily verified that f(z)) does not change in the
subinterval [0,1/3] and that it changes sign in the subinterval [1/3,2/3]. Hence we choose
the subinterval [1/3,2/3] and bisect it further. This will result in the choice of the new
subinterval [1/2,2/3]. We approximate the root at this stage as the arithmetic average
of the end-point coordinates of this interval, this gives for the root x, = 0.58333... Now
£(0.5833) & 5.4 x 103; if the root is desired only to this accuracy, we can stop here or if
further accuracy is desired, we can proceed further with the bisection method. The above
method can be generalized as a bisection algorithm as follows:



1. Given f(x), choose the initial interval [z, x5] such that x; < x5 and f(z1) * f(22) <
0. Choose € > 0, the tolerance level. Choose N, maximum number of bisections.
Define a counter, say b, to keep track of the number of bisections performed.

2. forib < N
Compute z3 = (z1 + 22)/2.
if {|f(x3)| < € then print results and exit the program}
if {f(z1) * f(z3) <0 then set x5 = x3}
else {f(x3) * f(x2) < O then set zy = x3}.

3. If convergence was not obtained in N bisections, print current values for x;, xs
and f(x3) and inform the user that the tolerance criterion was not satisfied in N
bisections and exit the program.

Notice that this algorithm locates only one root of the equation at a time. This is
generally true of numerical methods for solving nonlinear equations. When an equation
has multiple roots, it is the choice of the initial interval provided by the user which
determines which root is located. The choice of an interval [a, b] such that f(a)x* f(b) < 0
only ensures that there is at least one real root between a and b, and therefore that the
method can converge to a root. The contrary condition, f(a) * f(b) > 0 does not imply
that there are no real roots in the interval [a,b], however. Consider the example given
above, with a starting interval of [0, 1]. What one can say, is that there is no guarantee of
there being a root in the interval [a, b] when f(a) x f(b) > 0, and the bisection algorithm
will fail in this case. Thus the choice of starting interval is important to the success of
the bisection method.

2.1 The Error Criterion

Instead of the criterion |f(x)| < e used above, we can implement criteria which are
insensitive to the value of the function. One such criterion is obtained by requiring that
|zy — 29| < 6. This is an absolute tolerance criterion. There are instances when this is
not a good criterion to use. For example: suppose x; = 1.0000 and x5 = 1.0001; then
|z1 — o] = 1.0E — 4. Now, say the same equation was rescaled so that z; = 1.0000E + 10
and zo = 1.0001 E+10; then |x; — 3| = 1.0E 46, a number much larger than the previous
estimate before rescaling. This is not a desirable property for an error criterion. Hence in
order to make the criterion independent of the absolute magnitude of x, we use a relative



tolerance criterion, given by
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Note that for both the intervals [1.0000, 1.0001] and [1.0000E + 10, 1.0001E + 10], we get

_lmi—me| 104
Gtz 2 107

2.2 Convergence

Suppose our initial interval size, i.e., x5 — xy, is given by I;. Then after the 1st bisection
the interval size I = Iy/2, after the second bisection, Iy = I, /2 = Iy/4 etc. Generalizing,
after the nth bisection,

I,=1,1/2=1,/(2"). (2)

So if the tolerance level is d, then the number of bisections required to reduce the interval
width to ¢ is given by
ns > logy(lo/9). (3)

Or in other words, if we think of the current interval size as the error, the error in the
nth step is proportional to the error in the (n — 1)th step. This is characteristic of a
linearly convergent algorithm. We say that a method is linearly convergent if the error in
the nth step is proportional to the error in the (n — 1)th step raised to the first power,
quadratically convergent if the error in the nth step is proportional to the error in the
(n — 1)th step raised to the second power, quartically convergent if raised to the fourth
power, and so forth.

3 The Method of False Position

The poor convergence of the bisection method as well as its poor adaptability to higher
dimensions (i.e., systems of two or more non-linear equations) motivate the use of better
techniques. One such method is the Method of False Position. Here, we start with an
initial interval [z, xs], and we assume that the function changes sign only once in this
interval. Now we find an x3 in this interval, which is given by the intersection of the x
axis and the straight line passing through (z1, f(x1)) and (z9, f(x2)). It is easy to verify

that x3 is given by
(w2 — 1) * f(a1)

f(z2) — f(m1)

(4)

T3 =T1 —



Now, we choose the new interval from the two choices [x1, 23] or [z3, 2] depending on in
which interval the function changes sign.

The false position method differs from the bisection method only in the choice it
makes for subdividing the interval at each iteration. It converges faster to the root because
it is an algorithm which uses appropriate weighting of the intial end points x; and x5 using
the information about the function, or the data of the problem. In other words, finding
x3 is a static procedure in the case of the bisection method since for a given x; and x,, it
gives identical x3, no matter what the function we wish to solve. On the other hand, the
false position method uses the information about the function to arrive at 3.

4 Newton-Raphson Technique

The Newton-Raphson method is one of the most widely used methods for root finding.
It can be easily generalized to the problem of finding solutions of a system of non-linear
equations, which is referred to as Newton’s technique. Moreover, it can be shown that
the technique is quadratically convergent as we approach the root.

Unlike the bisection and false position methods, the Newton-Raphson (N-R) tech-
nique requires only one inital value xq, which we will refer to as the initial guess for the
root. To see how the N-R method works, we can rewrite the function f(x) using a Taylor
series expansion in (x — xp):

f(x) = f(xo) + [ (wo)(x — wo) + 1/2f"(w0) (x — 30)> + ... = 0 (5)

where f'(z) denotes the first derivative of f(x) with respect to x, f"(z) is the second
derivative, and so forth. Now, suppose the initial guess is pretty close to the real root.
Then (x — xg) is small, and only the first few terms in the series are important to get an
accurate estimate of the true root, given xy. By truncating the series at the second term
(linear in x), we obtain the N-R iteration formula for getting a better estimate of the true

root:
f (o)
f' (o)

Thus the N-R method finds the tangent to the function f(z) at + = x¢ and ex-
trapolates it to intersect the = axis to get x;. This point of intersection is taken as the
new approximation to the root and the procedure is repeated until convergence is ob-
tained whenever possible. Mathematically, given the value of x = z; at the end of the ith

(6)

Ty = Ty —



Fi gure 2: Newt on- Raphson Met hod
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iteration, we obtain z;,; as

i+l = Tj — 5 7
Tit1 T fl(xz) ( )
We assume that the derivative does not vanish for any of the z, £ = 0,1,---,7 + 1.

The result obtained from this method with xq = 0.1 for the equation of Example 1,
x * sin(rx) — exp(—z) = 0, is graphically shown in Figure 2. Here also, when multiple
roots are present, the root evenutally identified by the algorithm depends on the starting
conditions supplied by the user. For example, if we had started with xy = 0.0, the N-R
method will converge to the larger root, as shown in Figure 3. So, before using any of the
methods, we should try to get as good a feel as we can afford to get for the function. An
approximate idea of the roots can be developed from the physics the equation represents,
preliminary mathematical analysis and using plotting routines.

4.1 The Initial Guess

One good way to estimate an initial guess for starting the N-R method is to linearize the
equation being solved. For example, the equation f(x) = z x sin(rz) — exp(—x) may be

6
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rewritten as a sum of two series:

)2t (—x)"

o) = DG - Y

- (8)
Linearization implies that we approximate this equation with one in which we neglect all
terms containing z raised to a power m > 1 (22, 2%, etc.) (c.f. Introduction). In this
example, linearization reduces the equation to:

flz)=1—=z (9)

The root of the linearized equation f(z) = 1 —x = 0 is 1, which provides a reasonable
initial guess for the actual roots on the nonlinear equation, in the absence of a plot such
as Figure 1.



