Program Driver file for gaussj.c routine
/* Driver for routine for gaussj.c */
/* Program gauss_driver.c */
#include <stdio.h>
#include <stdlib.h>
#include "nr.h"
#include "nrutil.h" /* Utilities program, listed in Appendix B of NRC book */
/* NRC stands for Numerical Recipes in C */
#define MAXSTR 80
int main(void)
{
int j,k,l,m,n,NP,MP;
float **a,**ai,**u,**b,**x,**t;
char dummy[MAXSTR];
FILE *fp;
/*
* a is the coefficient matrix.
* ai=a before gaussj is called, ai = inverse(a) after the function call.
* u = ai*a, we define this to test the program,
* if correct u should be the unit matrix.
* b = matrix of dimension n*m where m is the number of r.h.s. vectors for which
* you want to solve A.x = b.
* x = b before gaussj is called, x is the solution vector after gaussj is called.
* t is an n*m matrix defined to test the solution.
*/
/*
* Read NP to allocate space for the matrices.
*/
printf("Input the dimension of the largest square matrix to be used\n");
scanf("%d",&NP);
printf("Input the maximum number of r.h.s. vectors\n");
scanf("%d",&MP);
a=matrix(1,NP,1,NP); /* These commands have the same function as calloc */
ai=matrix(1,NP,1,NP);/* They are provided by the utility programs in NRC */
u=matrix(1,NP,1,NP);
b=matrix(1,NP,1,MP);
x=matrix(1,NP,1,MP);
t=matrix(1,NP,1,MP);
if ((fp = fopen("gaussj.dat","r")) == NULL)
nrerror("Data file gaussj.dat not found\n");
/* See a typical data file appended */
while (!feof(fp)) {
fgets(dummy,MAXSTR,fp);
fgets(dummy,MAXSTR,fp);
fscanf(fp,"%d %d ",&n,&m);
fgets(dummy,MAXSTR,fp);
for (k=1;k<=n;k++)
for (l=1;l<=n;l++) fscanf(fp,"%f ",&a[k][l]);
fgets(dummy,MAXSTR,fp);
for (l=1;l<=m;l++)
for (k=1;k<=n;k++) fscanf(fp,"%f ",&b[k][l]);
/* save matrices for later testing of results */
for (l=1;l<=n;l++) {
for (k=1;k<=n;k++) ai[k][l]=a[k][l];
for (k=1;k<=m;k++) x[l][k]=b[l][k];
}
/* Call gaussj: note that after the call, a is replaced by its
inverse and b is replaced by the solution vector */
/*--------------------------------------------------------------------- */
gaussj(ai,n,x,m);
/*--------------------------------------------------------------------- */
printf("\nInverse of matrix a : \n");
for (k=1;k<=n;k++) {
for (l=1;l<=n;l++) printf("%12.6f",ai[k][l]);
printf("\n");
}
/* check inverse */
printf("\na times a-inverse:\n");
for (k=1;k<=n;k++) {
for (l=1;l<=n;l++) {
u[k][l]=0.0;
for (j=1;j<=n;j++)
u[k][l] += (a[k][j]*ai[j][l]);
}
for (l=1;l<=n;l++) printf("%12.6f",u[k][l]);
printf("\n");
}
/* check vector solutions */
printf("\nCheck the following for equality:\n");
printf("%21s %14s\n","original","matrix*sol'n");
for (l=1;l<=m;l++) {
printf("vector %2d: \n",l);
for (k=1;k<=n;k++) {
t[k][l]=0.0;
for (j=1;j<=n;j++)
t[k][l] += (a[k][j]*x[j][l]);
printf("%8s %12.6f %12.6f\n"," ",
b[k][l],t[k][l]);
}
}
}
fclose(fp);
free_matrix(t,1,NP,1,MP);
free_matrix(x,1,NP,1,MP);
free_matrix(b,1,NP,1,MP);
free_matrix(u,1,NP,1,NP);
free_matrix(ai,1,NP,1,NP);
free_matrix(a,1,NP,1,NP);
return 0;
}