given y'(t) = g (y(t),t), y(0)=y0 what is y(b)?

Simplest:

y(t) y(ta) + y'(ta) (t-ta)

but we know y'(ta) = g(y(ta),ta)

y(t) y(ta) + g(y(ta),ta) (t-ta)

Forward Euler Method:
y(tn+1) = y(tn) + g(y(tn),tn) (tn+1-tn)

Keeping the next term in the Taylor series:

y(t) y(ta) + y'(ta) (t-ta) + (1/2)y''(ta) (t-ta)2

we know y'(ta) = g(y(ta),ta)

and we can approximate the next derivative numerically:

y"(ta) = g'(y(ta),ta) [ g(y(t),t) - g(y(ta),ta) ]/(t-ta)

y(t) y(ta) + g(y(ta),ta) (t-ta) + (1/2){ [ g(y(t),t) - g(y(ta),ta) ]/(t-ta) }(t-ta)2

which simplifies to:

y(t) y(ta) + (1/2) [ g(y(t),t) + g(y(ta),ta) ] (t - ta)

Adams-Moulton (AM2) algorithm:
y(tn+1) = y(tn) + (1/2) [ g(y(tn+1),tn+1) + g(y(tn),tn) ] (tn+1 - tn)

(unfortunately this implicit equation usually has to be solved with a Root - Finder)