Arrays and Pointers. Lecture Plan.

e |ntrointo arrays.
definition and syntax
declaration & Initialization
major advantages
multidimensional arrays
examples

 |ntro into pointers.
address and indirection operators
definition of pointers
pointers and arrays — comparison
pointer arithmetic

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Array Is a group of elements that share a common
name, and that are different from one another by
their positions within the array.

C syntax: x| 1] =3. 14; Declaration: i nt X[5] ;

type name size

EECAVAN AN
/.

Array index Sets aside memory

for the array

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Initialization:
I nt grade[]={100, 99, 85};
I nt grade[3] ={ 100, 99, 85} ;
I nt grade[100] ={1, 3, 5, 7};
— grade]4]-grade[99] will be zeros.
gr ade[36] = 87;
Multidimensionality:

Scalar variable a

Vector variable (1D) g, Ay, Ay, ...

Matrix variable (2D) gy Agys Agos - - -
g, Ayq, Agpy - -
Ay, Apqy Aopy - v

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Declaration: i nt L=100, M:=100, N=100:

float a[L][M[N;
Initialization: al phal 2] [2] ={ 1, 2, 3, 4},

al pha]
al pha]
al pha]

2]
O]
1]

2
[1]
[1]

1={11,2},{3, 3}};

:3’
:2’

NB: Array sizeisfixed at declaration.
#define L 100
#defi ne M 100
#defi ne N 100

int a[L][M[N

October 2002 10.001 Introduction to Computer

M ethods

Arrays and Pointers

NB: In C numbers of array elements start form zero:
X[0], x[1], X[2], x[3], X[4]. There is no x[5].

NB: If X[5] Is accessed, no error will result!

Utility: smplify programming of repetitive operations
Improve clarity
Improve modularity
Improve flexibility

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Example: aprogram to compute the class average of the midterm.

Scalar form: Vector (array) form:
I nt mai n(voi d) {

fl oat average;

| nt sum=0, gr adel,

I nt mai n(voli d) {
fl oat aver age;
I nt 1, n,sunm=0, grade[100] ;

gradg?,n;; scanf (“%d”, &n) :
scanf (" %", &gradel); for(i=0;i<n,&n;i++){
scanf (" %", &gr ade2) ; scanf (“ %", &grade[i]):

L sum += grade[i];
sum += gradel, 1

sum += gradez; average = (float)suni n;

}

average = suni 95. 0;

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Example: Integration using Composite Trapezoid Rule

I:}f(x)dx

Continuous function f(x), X belongs to [a,b]
a set of discrete values f(x;), X, belong to [a,b].

_< h _dr@+1(b)
> ST+ F00l=hg==

z f(x)H

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Given afunction y=f(x) to integrate

form x=ato x=Db:
I nt mai n(voi d) {

h=(b-a)/n;

| ntegral =0.5*(func(a)+func(b));
for(i=1;1<n;i ++)

integral += func(a+i *h);

| nt egral *=h;

return(O0),;

}

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Given discrete datay; = f(x;) integrate form x=ato x=b:
I nt mai n(voi d) {

for (1=0; 1<=n; |++)
scanf (“% ", &[1]); [*reading f(x;)*/
| ntegral =0.5*(y[0]+y[n]);
for(i=1; i<n; i++){
scanf (“9%”,&y); /*summing f(x[i])*/
| ntegral +=vy;
}
scanf (“% ", &a)
scanf (“% ", &b)
Integral *= (b-a)/n;

féiLﬂlw(O);

}

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Calculating the average. Version 1./ *No arrays. */

#1 ncl ude <stdi o. h>
I nt mai n(voi d)

{

fl oat ave;

I nt sum=0,;

| nt datal, data2, datas3;
scanf (“%”, &datal);
scanf (“%”, &data2);
scanf (“%l”, &data3l),

sum == dat al,; N .

sum += dat a2: « inefficient coding
sum += dat a3; only works for a fixed
ave = suni 3. 0; number of data points

}

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Calculating the average. Version 2.
/* no arrays, scalar “for” |oop */

#i ncl ude <stdi o. h>
i{nt mai n(voi d)
fl oat ave:
Int 1, n, datal, sum=0;
scanf (“%”, &n);
for (i=0;i<n;i++){
scanf (“%l”, &datal),
sum += dat ai ;

ave = (float) sunin;

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Calculating the average. Version 3./* wth arrays */
#i ncl ude <stdi o. h>

#1 ncl ude <mat h. h>

#def i ne NVAX 100

I nt mai n(voli d)

{
fl oat ave;
Int 1, n, data] NMAX], sunmeO;
scanf (“%”, &n);
| f (N>NVAX) printf(“nunber of pts > NVAX);
for (1=0; 1<n; 1|++)
scanf (“%”, &data[i]);
sum += datali];

}

ave = float (sum/n; *arraysizeis fixed at declaration
 use #define to have some flexibility
}

October 2002 10.001 Introduction to Computer
Methods

Arrays, Summing up

* The name identifies the location in memory, big
enough to store the whole array.

 a k] refersto the k-th element of the array, the
Indexing starting from O.

* The memory allocation happens when the array 1s
declared: use # to set the dimensions.

» Advantages. clear and compact coding, better
modularity, take advantage of loops for repetitive
operations.

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

| ntro into pointers.
& - address operator, unary, right to left precedence
v —variable &v —location (address) of v in

the memory
The special type of variable to operate with the address is
needed: POINTER pv = &v;
|dentifier Y pVv
Memory address 1776 1997
Value 5 1776

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Declaration: 1 nt *p; P — pointer to integer variable.
Value range: zero or NULL address and a set of positive
Integers.

Assignment: p=0; p=NULL; p=& ; p=(int *)1776;

/

address of i cast as “pointer to int

Indirection (dereferencing) operator * - “inverse” to &.
Gives the value of the variable pointed to by the pointer.

P = & ; | = *p; We can access any variable, if
know the variable’s address!
& = p; illegal, addresses are allocated by declarations.

p = &3; p = &(i+j); illegal: constants and
expressions do not have addresses.

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Relationship between arrays and pointers:.

e Array nameisapointer constant, it'svalueisthe
address of the first element of the array.
* Pointers can be subscribed
af[i] = *(a + 1) a —address of a| 0]
(base address or the array)
al[i] = *(p + 1) pointstoi-th e ement of
the array

NB: aisaconstant pointer, a=p, ++a, &a
are illegal.

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Pointer arithmetic is equivalent to array indexing:
p=a+1 p = &a[1]
p=a+m p = &a[m

Summing the array using pointers:
for (p =a; p < &[N; ++p)
sum += *p;
or
for (I =0; 1 < N, ++i)
sum += *(a + 1);

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Pointer arithmetic:

p + 1 ++p D + | D += |
However, pointers and numbers are not quite the same:
double a2], *p, *q;

P=4a

q=p+1

printf(“%d\n”, g —p); [* 1isprinted */
printf(“%d\n” ,(int) g — (int) p); /* 8isprinted */

The difference in terms of array elementsis 1, but the
difference in memory locationsis 8!

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Arrays and pointers as function arguments:

“call by value — “call by reference”
*Variables themselves *Pointers are used in the
are passed as function argument list: addresses of
arguments. variables are passed as

| arguments.
*The variables are
copied to be used *Variables are directly
by the function. accessed by the function.

*Dealing directly with
variables, which are
are not changed in

calling environment.

*The variables may be
changed inside the function
and returned.

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Passing arrays to functions:
Asindividual scalars. x=sun(gr ade[k], gr ade[k+1]) ;
prototype: I nt sun(X, Yy)

{

Int X, v,

Using pointers: X = sun(grade, n)
prototype: I nt sun(int *grade, int n);
{ Int res, *p;
res =0;
for (p=grade; p<&grade[N|; ++p)
res += *p;
return(res);

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

The function swaps two variables, using “call by
reference”.

void swap(int *p, int *Q)

{

I nt tnp;
tmp = *p;
P = *Q;
*q = tnp;

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Checking how “swap” works:
#1 ncl ude <stdi o. h>
void swap(int *, int *)

{

int 1 =3, | =5
swap(& , &);
printf(“% %\n”, 1,]);
return O;

} [* 5 3 1s printed */

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Pointer arithmetic summed up:

1.
2.
3.

4.

D.

Assignment: ptr = &a;

Vauefinding: *ptr = a;

Taking pointer address: &pt r —addressof pt r
In the memory (pointer to pointer).

Addition/subtratction: ptr2 = ptrl +1;
ptr2-ptr?2;
Increment: pt r 1++ ptrl + 1

NB Increment does not work for pointer constants.
6. Indexing —likearrays. ptr[i1] = a[l];
NB Pointers and arrays are almost the same:

i * (... +)

October 2002 10.001 Introduction to Computer

M ethods

Arrays and Pointers

Automatic memory allocation happens when the
array 1s declared. | nt dat a] 100] ;
Dynamic memory allocation:

- functioncal | oc() takes 2 unsigned integers:
number of elementsin the array and number of bytes
In each element, returns a pointer to the base element
of the array and sets all the array elements to zero:

a = calloc(n, sizeof(int));
To clear (return) the allocated space the “free”
command Is used:

free(a);

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

The other option isfunction nal | oc() : it takes one unsigned

Integer - required number of bytes of memory desired.
Bothcal | oc and mal | oc return pointer to void and the result

will be casted automatically.

I nt mai n(void) {
fl oat *a;
i nt k;
scanf (“ %, &K) ;
a = (float *)nmall oc(k*sizeof (float);

a[0] = ...
free(a);
}
October 2002 10.001 Introduction to Computer

M ethods

Arrays and Pointers

Offsetting the pointer for the array to start form the
element 1 instead of O.

| nt n;
doubl e *a;
a = calloc(n+1, sizeof(double));
or
a = calloc(n, sizeof(double));
- -a,; [* offset the pointer */
a[1] isthefirst accessible storage element.

a—i

-

O 1 2 3 : : n

October 2002 10.001 Introduction to Computer
Methods

Multidimensional Arrays and

Pointers

| Nt

al[3][5]; /* 3 rows, 5 co

Some differences form vector arrays.
a- pointer to the base address & g 0][0] (not to g 0][0])
a+ 1 - pointer to the address of theith row & ai][0]
Both aand ati are pointers to pointers.
*a- row addessfor a (1st row), **a- value of a0][0].
We need to dereference twice to get form ato the values.

a[i] - pointer to theith row
a[1][J] *(&a[0] [0] + 5%

ums */

)

a0][0] | &a[0][0]

a

October 2002 10.001 Introduction to Computer

M ethods

Multidimensional Arrays and Pointers

Prove that each of the following four expressionsis equal to a[i][j]:
*(a[i] +])
(*(a +1))[]]

(((a + 1)) + j) /* NOTE 2 dereferencing operations */
*(&[0] [O] + 5*I +4])

Some more pointer arithmetic:

*(a + 1) address of the second row
*(a +)]) + k addressof a[j][K]
((a +]) + k) valueof a[]][K]
((a +) + k) a[J J[K] + m

Storage mapping - finding the array element using a pointer:
a[1][J]=*(&[0][0] + 5*i +])
NB need the number of columns (5), not just pointer to g 0][O]!

October 2002 10.001 Introduction to Computer
Methods

Multidimensional Arrays and Pointers

To pass an nD array to the function we need to set (n-1)
dimensions of the array outside the function. For n>1
programming becomes much less flexible: no dynamic
memory allocation, etc.

It may be avoided by using arrays of pointers. Let’s build a matrix
of an arbitrary size starting form pointer to pointer to double:
Int 1, n;
double**a, det; /* NB **adeclared, not an array */
[* getting n */
a = calloc(n, sizeof(double *)); /* a-array of pointersto double */
for (1=0; I <n; ++i)
a[i] = calloc(n, sizeof(double));

October 2002 10.001 Introduction to Computer
Methods

Multidimensional Arrays and Pointers

a — 1D pointer array nxn matrix in computer memory

0 o—/
1 0O 1 2 n-1
2

O 1 2 n-1

n-1 /

dl 0 1 2 n-1

October 2002 10.001 Introduction to Computer
Methods

Multidimensional Arrays and Pointers

Now we can easily pass ato afunction, say one
summing diagonal elements of the matrix:

double trace(double **a, int n)

{
Nt |
double sum = 0.0;
for (I =0; 1 <n; ++);
sum += &i][J];
return sum:;
}

October 2002 10.001 Introduction to Computer
Methods

Pointers to Functions

What if we need to do the same calculation for several
functions? i

Example: Z f*(k)
The summi ng routine:
double sum_sguare(double f(double), int m, int n) {
Int k;
double sum = 0.0;
for (k = m; k <=n; ++k)
sum += f(k) * f(k);
return sum;

}

The first argument is a pointer to function f, which takes
double and returns double.

October 2002 10.001 Introduction to Computer
Methods

Pointers to Functions

f can elther be treated as afunction or as a pointer
with dereferencing:

sum += (*f)(k) * (*f)(k); sum += f(k)*f(k)
f the pointer to function
*f the function itsalf
(*f)(k) the call to the function

Pointer to array: pointsto the first memory cell
containing the element of the array in the data
segment of computer memory.

Pointer to function: pointsto the first memory cell
containing the function in the code segment of
computer memory.

October 2002 10.001 Introduction to Computer
Methods

