Arrays and Pointers. Lecture Plan.

e |ntrointo arrays.
definition and syntax
declaration & Initialization
major advantages
multidimensional arrays
examples

 |ntro into pointers.
address and indirection operators
definition of pointers
pointers and arrays — comparison
pointer arithmetic
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Arrays and Pointers

Array Is a group of elements that share a common
name, and that are different from one another by
their positions within the array.

C syntax: x| 1] =3. 14; Declaration: i nt X[ 5] ;

type name size

EECAVAN AN
/.

Array index Sets aside memory

for the array
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Arrays and Pointers

Initialization:
I nt grade[]={100, 99, 85};
I nt grade[ 3] ={ 100, 99, 85} ;
I nt grade[ 100] ={1, 3, 5, 7};
— grade]4]-grade[99] will be zeros.
gr ade[ 36] = 87;
Multidimensionality:

Scalar variable a

Vector variable (1D) g, Ay, Ay, ...

Matrix variable (2D) gy Agys Agos - - -
g, Ayq, Agpy - -
Ay, Apqy Aopy - v
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Arrays and Pointers

Declaration: i nt L=100, M:=100, N=100:

float a[L][M[N;
Initialization: al phal 2] [ 2] ={ 1, 2, 3, 4},

al pha]
al pha]
al pha]

2]
O]
1]

2
[ 1]
[ 1]

1={11,2},{3, 3}};

:3’
:2’

NB: Array sizeisfixed at declaration.
#define L 100
#defi ne M 100
#defi ne N 100

int a[L][M[N
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Arrays and Pointers

NB: In C numbers of array elements start form zero:
X[0], x[1], X[2], x[3], X[4]. There is no x[5].

NB: If X[5] Is accessed, no error will result!

Utility: smplify programming of repetitive operations
Improve clarity
Improve modularity
Improve flexibility
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Arrays and Pointers

Example: aprogram to compute the class average of the midterm.

Scalar form: Vector (array) form:
I nt mai n(voi d) {

fl oat average;

| nt sum=0, gr adel,

I nt mai n(voli d) {
fl oat aver age;
I nt 1, n,sunm=0, grade[ 100] ;

gradg?,n;; scanf (“%d”, &n) :
scanf (" %", &gradel); for(i=0;i<n,&n;i++){
scanf (" %", &gr ade2) ; scanf (“ %", &grade[i]):

L sum += grade[i];
sum += gradel, 1

sum += gradez; average = (float)suni n;

}

average = suni 95. 0;
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Arrays and Pointers

Example: Integration using Composite Trapezoid Rule

I:}f(x)dx

Continuous function f(x), X belongs to [a,b]
a set of discrete values f(x;), X, belong to [a,b].

_< h _dr@+1(b)
> ST+ F00l=hg==

z f(x)H
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Arrays and Pointers

Given afunction y=f(x) to integrate

form x=ato x=Db:
I nt mai n(voi d) {

h=(b-a)/n;

| ntegral =0.5*(func(a)+func(b));
for(i=1;1<n;i ++)

integral += func(a+i *h);

| nt egral *=h;

return(O0),;

}
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Arrays and Pointers

Given discrete datay; = f(x;) integrate form x=ato x=b:
I nt mai n(voi d) {

for (1=0; 1<=n; |++)
scanf (“% ", &[1]); [*reading f(x;)*/
| ntegral =0.5*(y[0]+y[n]);
for(i=1; i<n; i++){
scanf (“9%”,&y); /*summing f(x[i])*/
| ntegral +=vy;
}
scanf (“% ", &a)
scanf (“% ", &b)
Integral *= (b-a)/n;

féiLﬂlw(O);

}
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Arrays and Pointers

Calculating the average. Version 1./ *No arrays. */

#1 ncl ude <stdi o. h>
I nt mai n(voi d)

{

fl oat ave;

I nt sum=0,;

| nt datal, data2, datas3;
scanf (“%”, &datal);
scanf (“%”, &data2);
scanf (“%l”, &data3l),

sum == dat al,; N .

sum += dat a2: « inefficient coding
sum += dat a3;  only works for a fixed
ave = suni 3. 0; number of data points

}
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Arrays and Pointers

Calculating the average. Version 2.
/* no arrays, scalar “for” |oop */

#i ncl ude <stdi o. h>
i{nt mai n( voi d)
fl oat ave:
Int 1, n, datal, sum=0;
scanf (“%”, &n);
for (i=0;i<n;i++){
scanf (“%l”, &datal),
sum += dat ai ;

ave = (float) sunin;
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Arrays and Pointers

Calculating the average. Version 3./* wth arrays */
#i ncl ude <stdi o. h>

#1 ncl ude <mat h. h>

#def i ne NVAX 100

I nt mai n(voli d)

{
fl oat ave;
Int 1, n, data] NMAX], sunmeO;
scanf (“%”, &n);
| f (N>NVAX) printf(“nunber of pts > NVAX);
for (1=0; 1<n; 1|++)
scanf (“%”, &data[i]);
sum += datali];

}

ave = float (sum/n; *arraysizeis fixed at declaration
 use #define to have some flexibility
}
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Arrays, Summing up

* The name identifies the location in memory, big
enough to store the whole array.

 a k] refersto the k-th element of the array, the
Indexing starting from O.

* The memory allocation happens when the array 1s
declared: use # to set the dimensions.

» Advantages. clear and compact coding, better
modularity, take advantage of loops for repetitive
operations.
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Arrays and Pointers

| ntro into pointers.
& - address operator, unary, right to left precedence
v —variable  &v —location (address) of v in

the memory
The special type of variable to operate with the address is
needed: POINTER pv = &v;
|dentifier Y pVv
Memory address 1776 1997
Value 5 1776
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Arrays and Pointers

Declaration: 1 nt *p; P — pointer to integer variable.
Value range: zero or NULL address and a set of positive
Integers.

Assignment: p=0; p=NULL; p=& ; p=(int *)1776;

/

address of i  cast as “pointer to int

Indirection (dereferencing) operator * - “inverse” to &.
Gives the value of the variable pointed to by the pointer.

P = & ; | = *p; We can access any variable, if
know the variable’s address!
& = p; illegal, addresses are allocated by declarations.

p = &3; p = &(i+j); illegal: constants and
expressions do not have addresses.
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Arrays and Pointers

Relationship between arrays and pointers:.

e Array nameisapointer constant, it'svalueisthe
address of the first element of the array.
* Pointers can be subscribed
af[i] = *(a + 1) a —address of a| 0]
(base address or the array)
al[i] = *(p + 1) pointstoi-th e ement of
the array

NB: aisaconstant pointer, a=p, ++a, &a
are illegal.
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Arrays and Pointers

Pointer arithmetic is equivalent to array indexing:
p=a+1 p = &a[1]
p=a+m p = &a[m

Summing the array using pointers:
for (p =a; p < &[N; ++p)
sum += *p;
or
for (I =0; 1 < N, ++i)
sum += *(a + 1);
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Arrays and Pointers

Pointer arithmetic:

p + 1 ++p D + | D += |
However, pointers and numbers are not quite the same:
double a2], *p, *q;

P=4a

q=p+1

printf(“%d\n”, g —p); [* 1isprinted */
printf(“%d\n” ,(int) g — (int) p); /* 8isprinted */

The difference in terms of array elementsis 1, but the
difference in memory locationsis 8!
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Arrays and Pointers

Arrays and pointers as function arguments:

“call by value —  “call by reference”
*Variables themselves *Pointers are used in the
are passed as function argument list: addresses of
arguments. variables are passed as

| arguments.
*The variables are
copied to be used *Variables are directly
by the function. accessed by the function.

*Dealing directly with
variables, which are
are not changed in

calling environment.

*The variables may be
changed inside the function
and returned.
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Arrays and Pointers

Passing arrays to functions:
Asindividual scalars. x=sun( gr ade[ k], gr ade[ k+1] ) ;
prototype: I nt sun( X, Yy)

{

Int X, v,

Using pointers: X = sun(grade, n)
prototype: I nt sun(int *grade, int n);
{ Int res, *p;
res =0;
for (p=grade; p<&grade[ N|; ++p)
res += *p;
return(res);
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Arrays and Pointers

The function swaps two variables, using “call by
reference”.

void swap(int *p, int *Q)

{

I nt tnp;
tmp = *p;
P = *Q;
*q = tnp;
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Arrays and Pointers

Checking how “swap” works:
#1 ncl ude <stdi o. h>
void swap(int *, int *)

{

int 1 =3, | =5
swap(& , &);
printf(“% %\n”, 1, ]);
return O;

} [* 5 3 1s printed */
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Arrays and Pointers

Pointer arithmetic summed up:

1.
2.
3.

4.

D.

Assignment: ptr = &a;

Vauefinding: *ptr = a;

Taking pointer address: &pt r —addressof pt r
In the memory (pointer to pointer).

Addition/subtratction: ptr2 = ptrl +1;
ptr2-ptr?2;
Increment: pt r 1++ ptrl + 1

NB Increment does not work for pointer constants.
6. Indexing —likearrays. ptr[i1] = a[l];
NB Pointers and arrays are almost the same:

i * (... +)
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Arrays and Pointers

Automatic memory allocation happens when the
array 1s declared. | nt dat a] 100] ;
Dynamic memory allocation:

- functioncal | oc( ) takes 2 unsigned integers:
number of elementsin the array and number of bytes
In each element, returns a pointer to the base element
of the array and sets all the array elements to zero:

a = calloc(n, sizeof(int));
To clear (return) the allocated space the “free”
command Is used:

free(a);
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Arrays and Pointers

The other option isfunction nal | oc() : it takes one unsigned

Integer - required number of bytes of memory desired.
Bothcal | oc and mal | oc return pointer to void and the result

will be casted automatically.

I nt mai n(void) {
fl oat *a;
i nt k;
scanf (“ %, &K) ;
a = (float *)nmall oc(k*sizeof (float);

a[0] = ...
free(a);
}
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Arrays and Pointers

Offsetting the pointer for the array to start form the
element 1 instead of O.

| nt n;
doubl e *a;
a = calloc(n+1, sizeof(double));
or
a = calloc(n, sizeof(double));
- -a,; [* offset the pointer */
a[1] isthefirst accessible storage element.

a—i

-

O 1 2 3 : : n
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Multidimensional Arrays and

Pointers

| Nt

al[3][5]; /* 3 rows, 5 co

Some differences form vector arrays.
a- pointer to the base address & g 0][0] (not to g 0][0])
a+ 1 - pointer to the address of theith row & ai][ 0]
Both aand ati are pointers to pointers.
*a- row addessfor a (1st row), **a- value of a0][0].
We need to dereference twice to get form ato the values.

a[i] - pointer to theith row
a[1][J] *(&a[ 0] [0] + 5%

ums */

)

a0][0] | &a[0][0]

a
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Multidimensional Arrays and Pointers

Prove that each of the following four expressionsis equal to a[i][j]:
*(a[i] +])
(*(a +1))[]]

*((*(a + 1)) + j) /* NOTE 2 dereferencing operations */
*(&[ 0] [O] + 5*I +4])

Some more pointer arithmetic:

*(a + 1) address of the second row
*(a +)]) + k addressof a[j ][ K]
*(*(a +]) + k) valueof a[] ][ K]
*(*(a + ) + k) a[J J[K] + m

Storage mapping - finding the array element using a pointer:
a[1][J]=*(&[0][0] + 5*i +])
NB need the number of columns (5), not just pointer to g 0][O]!
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Multidimensional Arrays and Pointers

To pass an nD array to the function we need to set (n-1)
dimensions of the array outside the function. For n>1
programming becomes much less flexible: no dynamic
memory allocation, etc.

It may be avoided by using arrays of pointers. Let’s build a matrix
of an arbitrary size starting form pointer to pointer to double:
Int 1, n;
double**a, det; /* NB **adeclared, not an array */
[* getting n */
a = calloc(n, sizeof(double *)); /* a-array of pointersto double */
for (1=0; I <n; ++i)
a[i] = calloc(n, sizeof(double));
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Multidimensional Arrays and Pointers

a — 1D pointer array nxn matrix in computer memory

0 o—/
1 0O 1 2 n-1
2

O 1 2 n-1

n-1 /

dl 0 1 2 n-1
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Multidimensional Arrays and Pointers

Now we can easily pass ato afunction, say one
summing diagonal elements of the matrix:

double trace(double **a, int n)

{
Nt |
double sum = 0.0;
for (I =0; 1 <n; ++);
sum += &i][J];
return sum:;
}
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Pointers to Functions

What if we need to do the same calculation for several
functions? i

Example: Z f*(k)
The summi ng routine:
double sum_sguare(double f(double), int m, int n) {
Int k;
double sum = 0.0;
for (k = m; k <=n; ++k)
sum += f(k) * f(k);
return sum;

}

The first argument is a pointer to function f, which takes
double and returns double.
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Pointers to Functions

f can elther be treated as afunction or as a pointer
with dereferencing:

sum += (*f)(k) * (*f)(k); sum += f(k)*f(k)
f the pointer to function
*f the function itsalf
(*f)(k) the call to the function

Pointer to array: pointsto the first memory cell
containing the element of the array in the data
segment of computer memory.

Pointer to function: pointsto the first memory cell
containing the function in the code segment of
computer memory.
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