
October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers. Lecture Plan.
• Intro into arrays.

definition and syntax
declaration & initialization
major advantages
multidimensional arrays
examples

• Intro into pointers.
address and indirection operators
definition of pointers
pointers and arrays – comparison
pointer arithmetic

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Array is a group of elements that share a common
name, and that are different from one another by
their positions within the array.

C syntax: x[1]=3.14;
x[2]=5.2;
x[3]=6347;

Declaration: int x[5];

type name size

Sets aside memory
for the array

Array index

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Initialization:
int grade[]={100,99,85};
int grade[3]={100,99,85};
int grade[100]={1,3,5,7};

– grade[4]-grade[99] will be zeros.
grade[36] = 87;

Multidimensionality:
Scalar variable a
Vector variable (1D) a0, a1, a2,...
Matrix variable (2D) a00, a01,a02,...

a10,a11,a12,...
a20,a21,a22,...
...

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Declaration: int L=100, M=100, N=100;

float a[L][M][N];

Initialization: alpha[2][2]={1,2,3,4};
alpha[2][2]={{1,2},{3,3}};
alpha[0][1]=3;
alpha[1][1]=2;

NB: Array size is fixed at declaration.
#define L 100
#define M 100
#define N 100
...
int a[L][M][N]

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

NB: If x[5] is accessed, no error will result!

Utility: simplify programming of repetitive operations

improve clarity

improve modularity

improve flexibility

NB: In C numbers of array elements start form zero:
x[0], x[1], x[2], x[3], x[4]. There is no x[5].

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Example: a program to compute the class average of the midterm.

Scalar form:
int main(void){
float average;
int sum=0,grade1,
grade2,..;

scanf(“%d”,&grade1);
scanf(“%d”,&grade2);

...
sum += grade1;
sum += grade2;

...
average = sum/95.0;

}

Vector (array) form:
int main(void){
float average;
int i,n,sum=0,grade[100];
scanf(“%d”,&n);
for(i=0;i<n,&n;i++){
scanf(“%d”,&grade[i]);
sum += grade[i];

} ...
average = (float)sum/n;

}

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Example: Integration using Composite Trapezoid Rule

[]∑ ∑
=

−

=
−

 ++=+=

N

i

N

i
iii xf

bfaf
hxfxf

h
I

1

1

1
1)(

2

)()(
)()(

2

Continuous function f(x), x belongs to [a,b]
a set of discrete values f(xi), xi belong to [a,b].

∫=
b

a

dxxfI)(

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Given a function y=f(x) to integrate
form x=a to x=b:
int main(void) {

...

h=(b-a)/n;

integral =0.5*(func(a)+func(b));
for(i=1;i<n;i++)

integral += func(a+i*h);
integral *=h;

...
return(0);

}

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Given discrete data yi = f(xi) integrate form x=a to x=b:
int main(void) {

...
for (i=0; i<=n; i++)

scanf(“%f”,&y[i]); /*reading f(xi)*/
integral =0.5*(y[0]+y[n]);
for(i=1; i<n; i++){

scanf(“%f”,&y); /*summing f(x[i])*/
integral += y;

}
scanf(“%f”, &a)
scanf(“%f”, &b)
integral *= (b-a)/n;
...
return(0);

}

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers
Calculating the average. Version 1. /*No arrays.*/

#include <stdio.h>
int main(void)
{
float ave;
int sum=0;
int data1, data2, data3;
scanf(“%d”, &data1);
scanf(“%d”, &data2);
scanf(“%d”, &data3);
sum == data1;
sum += data2;
sum += data3;
ave = sum/3.0;
...

}

• inefficient coding
• only works for a fixed
number of data points

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Calculating the average. Version 2.
/* no arrays, scalar “for” loop */

#include <stdio.h>
int main(void)
{
float ave;
int i, n, datai, sum=0;
scanf(“%d”, &n);
for (i=0;i<n;i++){

scanf(“%d”, &datai);
sum += datai;

}
ave = (float) sum/n;
...

}

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers
Calculating the average. Version 3. /* with arrays */
#include <stdio.h>
#include <math.h>
#define NMAX 100
int main(void)
{
float ave;
int i, n, data[NMAX], sum=0;
scanf(“%d”, &n);
if(n>NMAX) printf(“number of pts > NMAX);
for (i=0; i<n; i++)

scanf(“%d”, &data[i]);
sum += data[i];

}
ave = float(sum)/n;
...

}

• array size is fixed at declaration
• use #define to have some flexibility

October 2002 10.001 Introduction to Computer
Methods

Arrays, Summing up

• The name identifies the location in memory, big

enough to store the whole array.

• a[k] refers to the k-th element of the array, the

indexing starting from 0.

• The memory allocation happens when the array is

declared: use # to set the dimensions.

• Advantages: clear and compact coding, better

modularity, take advantage of loops for repetitive

operations.

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Intro into pointers.
& - address operator, unary, right to left precedence
v – variable &v – location (address) of v in

the memory

The special type of variable to operate with the address is
needed: POINTER pv = &v;

Identifier v pv

Memory address 1776 1997

Value 5 1776

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Declaration: int *p; p – pointer to integer variable.
Value range: zero or NULL address and a set of positive
integers.

Assignment: p=0; p=NULL; p=&i; p=(int *)1776;

address of i cast as “pointer to int”

Indirection (dereferencing) operator * - “inverse” to &.
Gives the value of the variable pointed to by the pointer.
p = &i; i = *p; We can access any variable, if
know the variable’s address!
&i = p; illegal, addresses are allocated by declarations.
p = &3; p = &(i+j); illegal: constants and
expressions do not have addresses.

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Relationship between arrays and pointers:
• Array name is a pointer constant, it’s value is the

address of the first element of the array.
• Pointers can be subscribed
a[i] = *(a + i) a – address of a[0]

(base address or the array)
a[i] = *(p + i) points to i-th element of

the array

NB: a is a constant pointer, a=p, ++a, &a
are illegal.

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Pointer arithmetic is equivalent to array indexing:
p = a + 1 p = &a[1]
p = a + m p = &a[m]

Summing the array using pointers:
for (p = a; p < &a[N]; ++p)

sum += *p;
or

for (i = 0; i < N; ++i)

sum += *(a + i);

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Pointer arithmetic:
p + 1 ++p p + i p += i

However, pointers and numbers are not quite the same:

double a[2], *p, *q;

p = a;

q = p + 1;

printf(“%d\n”, q – p); /* 1 is printed */

printf(“%d\n”,(int) q – (int) p); /* 8 is printed */

The difference in terms of array elements is 1, but the
difference in memory locations is 8!

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Arrays and pointers as function arguments:
“call by value” – “call by reference”

•Variables themselves
are passed as function
arguments.

•The variables are
copied to be used
by the function.

•Dealing directly with
variables, which are
are not changed in
calling environment.

•Pointers are used in the
argument list: addresses of
variables are passed as
arguments.

•Variables are directly
accessed by the function.

•The variables may be
changed inside the function
and returned.

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers
Passing arrays to functions:
As individual scalars: x=sum(grade[k],grade[k+1]);
prototype: int sum(x,y)

{
int x, y;
...

Using pointers: x = sum(grade,n)
prototype: int sum(int *grade, int n);

{
int res, *p;
res =0;
for (p=grade;p<&grade[N];++p)

res += *p;
return(res);

}

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

The function swaps two variables, using “call by
reference”.

void swap(int *p, int *q)

{

int tmp;

tmp = *p;

*p = *q;

*q = tmp;

}

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Checking how “swap” works:
#include <stdio.h>
void swap(int *, int *)
{

int i = 3, j = 5;
swap(&i, &j);
printf(“%d %d\n”, i, j);
return 0;

} /* 5 3 is printed */

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Pointer arithmetic summed up:
1. Assignment: ptr = &a;
2. Value finding: *ptr = a;
3. Taking pointer address: &ptr – address of ptr

in the memory (pointer to pointer).
4. Addition/subtratction: ptr2 = ptr1 +1;

ptr2-ptr2;
5. Increment: ptr1++ ptr1 + 1
NB Increment does not work for pointer constants.
6. Indexing – like arrays: ptr[i] = a[i];
NB Pointers and arrays are almost the same:

....[i] *(….+i)

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Automatic memory allocation happens when the
array is declared: int data[100];

Dynamic memory allocation:
- function calloc() takes 2 unsigned integers:
number of elements in the array and number of bytes
in each element, returns a pointer to the base element
of the array and sets all the array elements to zero:

a = calloc(n, sizeof(int));

To clear (return) the allocated space the “free”
command is used:

free(a);

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers
The other option is function malloc(): it takes one unsigned
integer - required number of bytes of memory desired.
Both calloc and malloc return pointer to void and the result
will be casted automatically.

int main(void) {
float *a;
int k;
scanf(“%d,&k);
a = (float *)malloc(k*sizeof(float);
…
a[0] = …
…
free(a);

}

October 2002 10.001 Introduction to Computer
Methods

Arrays and Pointers

Offsetting the pointer for the array to start form the
element 1 instead of 0.

int n;
double *a;
a = calloc(n+1, sizeof(double));

or
a = calloc(n, sizeof(double));
--a; /* offset the pointer */

0 1 2 3 . . n

a[1] is the first accessible storage element.

a

October 2002 10.001 Introduction to Computer
Methods

Multidimensional Arrays and Pointers

int a[3][5]; /* 3 rows, 5 columns */

Some differences form vector arrays:
a - pointer to the base address &a[0][0] (not to a[0][0])
a + i - pointer to the address of the ith row &a[i][0]
Both a and a+i are pointers to pointers.
*a - row addess for a (1st row), **a - value of a[0][0].
We need to dereference twice to get form a to the values.
a[i] - pointer to the ith row
a[i][j] *(&a[0][0] + 5*i + j)

a[0][0] &a[0][0] a

October 2002 10.001 Introduction to Computer
Methods

Multidimensional Arrays and Pointers
Prove that each of the following four expressions is equal to a[i][j]:

*(a[i] + j)
(*(a + i))[j]

(((a + i)) + j) /* NOTE 2 dereferencing operations */
*(&a[0][0] + 5*i +j)

Some more pointer arithmetic:
*(a + 1) address of the second row
*(a + j) + k address of a[j][k]
((a + j) + k) value of a[j][k]
((a + j) + k) a[j][k] + m

Storage mapping - finding the array element using a pointer:
a[i][j] = *(&a[0][0] + 5*i + j)
NB need the number of columns (5), not just pointer to a[0][0]!

October 2002 10.001 Introduction to Computer
Methods

Multidimensional Arrays and Pointers

To pass an nD array to the function we need to set (n-1)
dimensions of the array outside the function. For n>1
programming becomes much less flexible: no dynamic
memory allocation, etc.

It may be avoided by using arrays of pointers. Let’s build a matrix
of an arbitrary size starting form pointer to pointer to double:
int i, n;
double **a, det; /* NB **a declared, not an array */
…... /* getting n */
a = calloc(n, sizeof(double *)); /* a-array of pointers to double */
for (i = 0; i < n; ++i)

a[i] = calloc(n, sizeof(double));
…...

October 2002 10.001 Introduction to Computer
Methods

Multidimensional Arrays and Pointers

0
1
2

n-1

0 1 2 n-1

0 1 2 n-1

0 1 2 n-1

.

.

.

a – 1D pointer array nxn matrix in computer memory

October 2002 10.001 Introduction to Computer
Methods

Multidimensional Arrays and Pointers

Now we can easily pass a to a function, say one
summing diagonal elements of the matrix:

double trace(double **a, int n)
{

int i;
double sum = 0.0;
for (i = 0; i < n; ++i);

sum += a[i][j];
return sum;

}

October 2002 10.001 Introduction to Computer
Methods

Pointers to Functions

What if we need to do the same calculation for several
functions?

Example:

The summing routine:
double sum_square(double f(double), int m, int n) {
int k;
double sum = 0.0;
for (k = m; k <= n; ++k)

sum += f(k) * f(k);
return sum;
}

The first argument is a pointer to function f, which takes
double and returns double.

∑
=

n

mk

kf)(2

October 2002 10.001 Introduction to Computer
Methods

Pointers to Functions

f can either be treated as a function or as a pointer
with dereferencing:
sum += (*f)(k) * (*f)(k); sum += f(k)*f(k)

f the pointer to function
*f the function itself

(*f)(k) the call to the function

Pointer to array: points to the first memory cell
containing the element of the array in the data
segment of computer memory.
Pointer to function: points to the first memory cell
containing the function in the code segment of
computer memory.

