
10.001: System of Linear Equations, Part 2

R. Sureshkumar

November 5, 1996

1 Invariant Operations and Gaussian Elimination

Here, we will discuss certain operations on a system of equations which do not alter the solution
to them. Such operations are called invariant operations, since they do not disturb the solu-
tion vector of the original problem. The basic idea involved here is once again that of linear
dependence, i.e., we can replace one or more of the n equations by a linear combination of a set
of the remaining equations, without changing the solution vector. Hence, multiplication of any
of the equations with a non-zero scalar, addition of two or more equations etc. are invariant
operations. As we perform operations on the coe�cents of the equations, an identical set of
operations has to be performed on the appropriate component of the right hand side vector as
well. Hence, it is convenient if we append the right hand side vector to the coe�cient matrix as
an n+ 1th column. The resulting n� (n+ 1) matrix is called the augmented matrix.

Let's consider an example. The system of equations is given by x+2y+z = 8, 3x+4y+2z =
17 and 5x + 6y + z = 20. By adding the right hand side vector as the 4th column onto the
coe�cient matrix, we get the augmented matrix ~A, given below.

~A =

0
B@ 1 2 1 8

3 4 2 17
5 6 1 20

1
CA :

The augmented matrix now represents the entire system of equations, each row representing an
equation. For instance, the �rst row means 1x + 2y + 1z = 8. Now let's replace Row 2 with
�3� Row 1 + Row 2 and Row 3 with �5� Row 1 + Row 3. This gives

~A1 =

0
B@ 1 2 1 8

0 �2 �1 �7
0 �4 �4 �20

1
CA :

1



Now, we do the following operation: �2� Row 2 + Row 3 = Row 3. This gives

~A2 =

0
B@ 1 2 1 8

0 �2 �1 �7
0 0 �2 �6

1
CA :

Now, the augmented matrix ~A2 tells us that (read from bottom to top) �2z = �6; �2y�z = �7
and x+ 2y + z = 8. This is easily solved to give

z = �6=(�2) = 3

y = (�7 + 3)=(�2) = 2

z = (8� 3� 2� 2)=1 = 1; (1)

which is indeed the correct solution. The procedure mentioned above is one of the basic methods
for the solution of a linear system of equations, known as Gaussian elimination followed by back

substitution. Here, the procedure we followed to come up with the upper triangular coe�cient
matrix (corresponding to ~A2) is called Gaussian elimination. Solution by back substitution
refers to the procedure illustrated in Eq. 1.

Note that by doing the operations Row 1 = Row 1 + Row 2 and Row 2 = Row 2 - (Row
3)/2 followed by the operation Row i = Row i/(diagonal element of Row i), on ~A2 will result
in the diagonal system

~A3 =

0
B@ 1 0 0 1

0 1 0 2
0 0 1 3

1
CA ;

which directly gives us the solution without the back substitution step. This latter approach,
which involves a direct reduction of the coe�cient matrix to a unit (identity) matrix is the basis
for the Gauss-Jordan algorithm.

In the following section, we would generalize the algorithm discussed above.

2 The Gaussian Elimination Algorithm

The generalization of the algorithm we discussed in the previous section for an n � n system,
A:x = b can be given as follows:
Step 1: Forward Reduction

For k = 1; � � � ; n� 1

For i = k + 1; � � � ; n

lik = aik=akk

2



For j = k + 1; � � � ; n

aij = aij � likakj

End of loop over j

bi = bi � likbk

End of loop over i

End of loop over k: (2)

Step 2: Back Substitution

For k = n � � � ; 1

xk = bk

For i = k + 1; � � � ; n

xk = xk � akixi

End of loop over i

xk = xk=akk

End of loop over k: (3)

The algorithm above assumes that the diagonal entries, akk, are all non-zero. We will discuss
later on a modi�cation to the algorithm when this happens. Also notice that the algorithm
overwrites the coe�cient matrix and the right hand side vector every time a row operation is
performed. This helps reduce the storage requirements, which is signi�cant for large values of
n.

2.1 Number of Operations Required for the Gaussian Elimination Algorithm

We now estimate the number of arithmetic operations needed to compute the solution x using
the Gaussian elimination algorithm. The majority of the computational load (we assume n is
large) is concentrated in reducing the coe�cient matrix using the statement aij = aij � likakj
in Step 1 above. This requires one addition and one multiplication, so in the j loop of Step 1,
we have n� k additions. The i loop repreats this n� k times. So, the total number of additions
over the i, j and k loops is given by (verify the steps by yourself)

n�1X
k=1

(n� k)2 =
n�1X
k=1

k2

=
2n3 � 3n2 + n

6

�
n3

3
; for large values of n: (4)

3



In other words, the CPU (central processing unit) time requirement for the Gaussian elimination
algorithm scales with the cube of the number of unknowns. For this reason, numerical analysts
refer to it simply as a n-cube method. The implication is that if we can solve at best a system
of n equations on a a computer we currently have access to in say a time of T units, the solution
of a 10n system on the same computer will take (assuming memory requirements are su�cient)
1000T units of time. This is not a very desirable feature for a computational method and in
the parlance of numerical analysts, the algorithm has rather poor scalability. This observation
has prompted a great deal of research e�ort to develop algorithms with better scalability for the
solution of large systems of linear equations. Such methods consists of techniques which take into
account any special structre of the coe�cient matrix, iterative techniques, use of preconditioner
matrices and acceleration techniques, a discussion of which is beyond the scope of our course.

2.2 Potential Errors in Gaussian Elimination

2.2.1 How do we deal with the akk = 0 situation?

In the algorithm discussed above, we assumed that the diagonal elements do not vanish at any
stage in the elimination process. However, it is common to encounter diagonal entries which is
zero or close to zero. We need to modify our algorithm to circumvent such di�culties. This can
be simply achieved by interchanging the row with 0 diagonal element with another row below
it which has a non-zero element in the same column as the 0 element. This idea is illustrated
through the following example.

Consider the 3 � 3 system of equations: x + y + z = 3, x + y = 2 and y + z = 2. The
augmented matrix is

~A =

0
B@ 1 1 1 3

1 1 0 2
0 1 1 2

1
CA :

Now, Row 2 = Row 2 - Row 1 gives us

~A1 =

0
B@ 1 1 1 3

0 0 �1 �1
0 1 1 2

1
CA :

Evidently, a22 = 0 implying a break down of the algorithm. i.e., l32 (see Step 1 of the Gaussian
elimination algorithm) is not de�ned or in�nite. We can overcome this di�culty by interchanging
row 2 and row 3 to give (this does not a�ect the solution, we are simply changing the order in
which we write the equations)

~A2 =

0
B@ 1 1 1 3

0 1 1 2
0 0 �1 �1

1
CA :

4



Now, we can obtain the solution by back substitution.

2.3 Rounding Error and Instability

The rounding error we discussed in relation to the numerical integration rules are of importance
in Gaussian elimination as well. The �rst type of error occurs due to the accumulation of
rounding errors during a large number of arithmetic operations. For instance, if n = 1000,
then the number of operations (see Eq. 4) is of the order 109, hence, even in double precision
computations, the error could br large. Remember that this type of error accumulation was
demonstrated in realtion the numerical integration.

However, a more serious problem involves catastrophic rounding errors, leading to nu-

merical instability. Let's analyze the following 2 � 2 system to understand this. Consider the
system of equations �10�5x+ y = 1 and 2x+ y = 0 with the exact solution x = �0:49999975:::
and y = 0:999995. Suppose we are solving this system of equations on a computer which has a
precision of four decimal digits using the Gaussian elimination procedure, i.e., the representation
of any real constant is given by 0: � � � �� 10p. The augmented matrix to start with is given by

~A =

 
�0:1000 � 10�4 1 1

2 1 0

!
:

If we now apply the Gaussian elimination procedure, it results in the following computations:
l21 = a21=a11 = �0:2� 106 which is exact;
a22 = 0:1� 101 � (�0:2� 106)(0:1 � 101) = 0:2 � 106 which is approximate since the computer
can store values only upto four decimal places (the exact answer here is 0:200001 � 106;
b2 = �(�0:2� 106)(0:1� 101) = 0:2� 106 which is exact. Hence, we have the following system:

~A1 =

 
�0:1000 � 10�4 1 1

0 0:2� 106 0:2 � 106

!
:

giving us the (wrong) solution x = 0 and y = 1. Indeed, we could have dealt with the error in y
since the answer is correct to the precision of the computer, but as for the value of x, the error
is a factor of 50000 larger than the precison of the machine.

The origin of this problem may be traced to the large value of l21, which forced, in the
calculation of new a22 as a22;new = a22;old � l21 � a12 = 0:1 � 101 � (�0:2 � 106)(0:1 � 101), the
�rst term (a22;old) to be neglected. Indeed, by rewriting the system as

~Arearranged =

 
2 1 0

�0:1000 � 10�4 1 1

!
;

we can avoid this problem, l21 = �0:5 � 10�5 in this case. Show that Guassian elimination of
this system leads to an answer correct within the precision of the system.

5



The concept illustrated above can be generalized in an algorithm where we keep all the
multipliers (lik) less than or equal to one in absolute value. This procedure is known as partial

pivoting: at the kth stage of the elimination process, an interchange of rows is made, if necessary,
to place in the main diagonal position the element of largest absolute value from the kth column
on or below the main diagonal. This strategy, combined with the row interchange procedure
when a 0 diagonal element is encountered, gives rise to a more complete and robust Gaussian
elimination algorithm as below: only Step 1 (see 2) is changed, the back substitution step, i.e.,
Step 2 (see 3), remains the same.
Forward Reduction with Partial Pivoting

For k = 1; � � � ; n� 1
Find m � k such that jamkj = maxfjaikj : i � kg.
If amk = 0 then the A is singular, no unique solution, so stop.
Else interchange akj and amj , j = k; k + 1; � � � ; n; interchange bk and bm.
For i = k + 1; k + 2; � � � ; n
lik = aik=akk
For j = k + 1; k + 2; � � � ; n
aij = aij � likakj
End j loop
bi = bi � likbk
End i loop
End k loop.

6


