Linear Least Squares, General case

Our fittingfunction in general case is :
$F(x)=a_{1} f_{1}(x)+a_{2} f_{2}(x)+\ldots+a_{n} f_{n}(x)$
Note that the functionitself does not have tobelinear for the problemtobe linear. Thefit should belinear in thefitting parameters.

Linear Least Squares, General case

Thus we have: vectors x, y and a:
$x=\left(\begin{array}{c}x_{1} \\ \ldots \\ x_{N}\end{array}\right) \begin{gathered}\text { points } \\ \text { where the data }, \\ \text { was taken }\end{gathered} \quad y=\left(\begin{array}{l}y_{1} \\ \ldots \\ y_{N}\end{array}\right)$ the data,
$a=\left(\begin{array}{l}a_{1} \\ \ldots \\ a_{n}\end{array}\right)$ parameters
and functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$.

Linear Least Squares, General case

The problem now looks like:
$\mathrm{y}_{\mathrm{i}}=F\left(x_{i}\right)+e_{i}, \quad$ where e_{i} is a residual: mismatch between the measured value and the one predicted by the fit.
Let's intorduce vector e:

$$
e=\left(\begin{array}{l}
e_{1} \\
\ldots \\
e_{N}
\end{array}\right)
$$

Linear Least Squares, General case

Let us express the problem in matrix notation:

$$
\mathrm{Z}=\left[\begin{array}{cccc}
f_{1}\left(x_{1}\right) & f_{2}\left(x_{1}\right) & \ldots & f_{n}\left(x_{1}\right) \\
f_{1}\left(x_{2}\right) & f_{2}\left(x_{2}\right) & \ldots & f_{n}\left(x_{2}\right) \\
\ldots & \ldots & \ldots & \ldots \\
f_{1}\left(x_{N}\right) & f_{2}\left(x_{N}\right) & \ldots & f_{n}\left(x_{N}\right)
\end{array}\right]
$$

Overall we have now:

$$
\mathrm{y}=\mathrm{Z} \cdot a+e
$$

Fitting problem in matrix notation.
Look for $\min \left(\sum_{i=1}^{\mathrm{N}} \mathrm{e}_{\mathrm{i}}{ }^{2}\right)=\min \left(e^{T} e\right)$

Linear Least Squares, General case

$$
\begin{gathered}
\text { Look for } \min \left(\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{e}_{\mathrm{i}}^{2}\right)=\min \left(\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{y}_{\mathrm{i}}-\sum_{j=1}^{n} z_{i j} a_{j}\right)^{2}\right)= \\
\min \left((y-z \cdot a)^{T} \cdot(y-z \cdot a)\right) \\
\frac{\partial\left(e^{T} e\right)}{\partial a_{k}}=0 \text { for } 1 \leq k \leq n \\
\left(\frac{\partial(y-z \cdot a)}{\partial a_{k}}\right)^{T} \cdot(y-z \cdot a)=0
\end{gathered}
$$

Linear Least Squares, General case

$$
\begin{aligned}
& \left(-z \cdot \frac{\partial(a)}{\partial a_{k}}\right)^{T} \cdot(y-z \cdot a)=0 \\
& (z \cdot(00 \ldots 1 \ldots 0))^{T} \cdot(y-z \cdot a)=0 \\
& \left(z_{1 k} z_{2 k} \ldots z_{N k}\right)^{T} \cdot(y-z \cdot a)=0 \text { for } 1 \leq k \leq n
\end{aligned}
$$

Using Matlab colon notation:

$$
\left(\mathrm{z}_{\mathrm{i}, \mathrm{k}}\right)^{T} \cdot(z \cdot a)=\left(z_{\mathrm{i}, k}\right)^{T} \cdot y
$$

Or after putting all n equations together:

$$
z^{T} \cdot z \cdot a=z^{T} \cdot y
$$

Linear Least Squares, General case

In general case linear lest squares problem can be formulated as a set of linear equations.

Ways to solve:

1. Gaussian elimination.
2. To calculate the matrix inverse:

$$
a=\left(z^{T} \cdot z\right)^{-1} \cdot z^{T} \cdot y
$$

Suitable for Matlab, see homework 9.

Nonlinear Regression (Least Squares)

What if the fitting function is not linear in fitting parameters?
We get a nonlinear equation (system of equations).
Example:
$f(x)=a_{1}\left(1-e^{-a_{2} x}\right)+e$
$y_{i}=f\left(x_{i} ; a_{1}, a_{1}, \ldots, a_{m}\right)+e_{i}$ or just $y_{i}=f\left(x_{i}\right)+e_{i}$
Again look for the minimum of $\sum_{i=1}^{N} e_{i}{ }^{2}$ with respect
to the fitting parameters.

Matlab Function FMINSEARCH.

Accepts as input parameters:

1. Name of the function (FUN) to be minimized
2. Vector with initial guess X0 for the fitting parameters Returns: Vector X of fitting parameters providing the local minimum of FUN.

Function FUN accepts vector X and returns the scalar value dependent on X.
In our case (hw10) FUN should calculate
dependent on the fitting parameters $\quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{e}_{\mathrm{i}}{ }^{2}$ b, m, A_{1}, A_{2}, \ldots

Matlab Function FMINSEARCH.

Syntax: $x=$ FMINSEARCH(FUN,X0) or $x=$ FMINSEARCH(FUN,X0,OPTIONS) See OPTIMSET for the detail on OPTIONS.
$x=$ FMINSEARCH(FUN,X0,OPTIONS,P1,P2,..)
in case you want to pass extra parameters to FMINSEARCH

If no options are set use OPTIONS = [] as a place holder.

Use "@" to specify the FUN:
x = fminsearch(@myfun,X0)

Gauss-Newton method for nonlinear regression

$$
y_{i}=f\left(x_{i} ; a_{1}, a_{1}, \ldots, a_{m}\right)+e_{i} \text { or just } y_{i}=f\left(x_{i}\right)+e_{i}
$$

Look for the minimum of $\sum_{i=1}^{N} e_{i}^{2}$ with respect to a_{i}.

1. Make an initial guess for $\mathrm{a}: \mathrm{a} 0$.
2. Linearize the equations (use Taylor expansion about a0).
3. Solve for $\Delta \mathrm{a}-$ correction to $\mathrm{a} 0 \rightarrow \mathrm{a} 1=\mathrm{a} 0+\Delta \mathrm{a}-$ improved a-s and our new initial guess.
4. Back to (1).
5. Repeat until $\left|a_{k, j+1}-a_{k, j}\right|<\varepsilon$ for any k.

Gauss-Newton method for nonlinear regression

Linearization by Taylor expansion:

$$
\begin{aligned}
& y_{i}=f\left(x_{i}\right)+e_{i} \approx f\left(x_{i}, a 0\right)+\sum_{j=1}^{n} \frac{\partial f\left(x_{i}, a 0\right)}{\partial a_{n}}+e_{i} \\
& y_{i}-f\left(x_{i}, a 0\right)=\sum_{j=1}^{n} \frac{\partial f\left(x_{i}, a 0\right)}{\partial a_{n}}+e_{i} \text { for } i=1,2, \ldots, N
\end{aligned}
$$

or in matrix form:

$$
\begin{gathered}
\mathrm{D}=\mathrm{Z} \cdot \Delta \mathrm{a}+\mathrm{e} \text {, where } \\
\mathrm{D}=\left(\begin{array}{l}
\mathrm{y}_{1}-\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{a} 0\right) \\
\ldots . \\
\mathrm{y}_{\mathrm{N}}-\mathrm{f}\left(\mathrm{x}_{\mathrm{N}}, \mathrm{a} 0\right)
\end{array}\right) \text {, and } \mathrm{Z}=\left[\begin{array}{ccc}
\frac{\partial \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{a} 0\right)}{\partial \mathrm{a}_{1}} & \ldots & \frac{\partial \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{a} 0\right)}{\partial \mathrm{a}_{\mathrm{n}}} \\
\ldots & \ldots & \ldots \\
\frac{\partial \mathrm{f}\left(\mathrm{x}_{\mathrm{N}}, \mathrm{a} 0\right)}{\partial \mathrm{a}_{1}} & \ldots & \frac{\partial \mathrm{f}\left(\mathrm{x}_{\mathrm{N}}, \mathrm{a} 0\right)}{\partial \mathrm{a}_{\mathrm{n}}}
\end{array}\right]
\end{gathered}
$$

Gauss-Newton method for nonlinear regression

Linear regression: $\quad y=Z \cdot a+e$
Now, nonlinear regression: $\quad D=Z \cdot \Delta a+e$.
Old good linear equations with Δ a in plce of a,
D in place of y and Z with partial derivatives in place of Z with values of functions.
Solve it for $\Delta \mathrm{a}$, use a $1=\mathrm{a} 0+\Delta \mathrm{a}$ as the new initial guess and repeat the procedure untill the convergence criteria are met.....

