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Errors and Uncertainties

 experimental error  "   mistake
 experimental error  "   blunder

experimental error = inevitable uncertainty of the 
measurement 

The measured value alone is not enough. We also 
need the experimental error.
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Testing the Theories and Models

Experimental data should be consistent with you theory
(model) and inconsistent with alternative ones to prove
them wrong.

Example: Bending of the light near the Sun.

1. simplest classical theory 0’’

2. careful classical analysis 0.9’’

3. Einstein’s general relativity 1.8’’

Solar eclipse needed to check: Dyson, Eddington, Davidson,

year 1919, a=2’’,
95% confidence, 1.7’’ < α < 2.3’’.
Consistent with 1.8’’ and inconsistent with 0.9’’!!
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Types of Experimental Errors

Random errors

• rotating table + 
  stopwatch
• voltage measurements

i) revealed by repeating 
the measurements

ii) may be estimated 
statistically

Systematic errors

• measuring glass
• car performance
• calibration errors

in general are invisible

detected by comparison
with results of alternative
method or equipment
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How to Report & Use the Errors

Experimental result:
      measured value of   x   =    xbest          δx ±

the best 
estimate for x

uncertainty,
error,
margin of 
error

xbest - δx <   x   <  xbest  +    δx 

Usually 95%  confidence is suggested:
95%  sure x inside the limits
5%    chance x is outside the limits
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Some Basic Rules

Experimental errors should be always rounded to one
significant digit.

g = 9.82     0.02385   wrong

g = 9.82     0.02 correct

Thus error calculations become simple estimates.

Exception: if the leading significant digit of the error
is 1, keep one digit more.

Everest is  8848      1.5 m high

±

±

±
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Some Basic Rules

The last significant figure  in the answer should be
the same order of magnitude as the uncertainty.

92.8      0.3

92          3

90          30

±

±

±

During the calculation retain one more digit than is
finally justified to decrease the error.
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Error in a Sum or a Difference

Two (or more) independently measured variables:

x = xbest       dx
δ(x      y)  =     δx + δy

y = ybest       dy 

δ(x      y     z     ….)  =     δx + δy + δz +….

If x,  y,  z,…. are large, but  (x      y     z     ….)
is small  �  trouble! Overall error is large.

±
±

±

± ± ±

± ± ±
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Calculating Relative Errors

relative error  =
(fractional uncertainty)  

x

xδ

x  =  50       1 cm = 0.02

x = 100000      1 cm = 0.00001

±

±
x

xδ
x

xδ
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Relative errors of product and ratio of two variables.

( )
?

( )( ) ( )

( )

( )

best

best

best best best best best best

best best

best best

x x x x x

y y y y y

xy

xy

xy x x y y x y x y y x

xy x y y x

xy x y

xy y x

δ δ

δ δ
δ

δ δ δ δ
δ δ δ
δ δ δ

= ± <<

= ± <<

=

= ± ± ≈ ± +
= +

= +

For product xy the relative error is the sum of relative errors of x
and y.
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Relative errors of product and ratio of two variables.
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2 Simple Rules.

When the measured quantities are added or
subtracted the errors add.

When the measured quantities are multiplied
or divided, the relative errors add.
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Propagation of Errors

We have upper bounds on errors for sum/difference and
product/quotient of 2 measurables. Can we do any better?

If errors are independent and random:
the errors are added in quadrature.

( ) ( )

( ) ( ) ( ) ( )

2 2

2 2 2 2

... ( ... )

... ...

... ...

q x y

q x y x y

q x z u w

q x z u w

x z u w

δ δ δ δ δ

δ δ δ δ δ
δ δ δ δ

= +

= + ≤ +

= + + − + +

= + + + + + ≤

≤ + + + + +
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Propagation of Errors

( ) ( ) ( ) ( )

1

2

1 2

2 2 2 2

1 2

1 2

5.3 0.2

7.2 0.2

0.2 0.2 3

2 2 4
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l l l

l l l mm
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δ δ δ
δ δ

= ±
= ±

= +

= + = + ≈

= + = + =

For 2 measurables there is no great difference, but
for n measurables the difference is          .n/1
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Propagation of Errors

2 2 2 2

...

...

... ...

... ...

x z
q

u w

q x z u w

q x z u w

x z u w

x z u w

δ δ δ δ δ

δ δ δ δ

× ×=
× ×

       = + + + + + ≤              

≤ + + + + +

Relative error of product/quotient:

If the relative errors for n measurables are the same, 
we gain          in relative error.n/1
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Propagation of Errors

( ) ( ) ( ) ( ) ( )

2 2 2 2 2

2 2 2 2 2

,

, , , 1%

5%

1% 1% 1% 1% 5% 29% 5%

work doneby motor mgh
efficiency e

energy delivered to motor VIt

relative error for m h V I

relative error for t

q m h V I t

q m h V I t

m h V

m h V

δ δ δ δ δ δ

δ δ δ

= =

=
=

         = + + + + =                  

+ + + + = ≈

+ + + 1% 1% 1% 1% 5% 9%
I t

I t

δ δ+ = + + + + =

D.C.  electric motor, V - voltage, I - current.
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Propagation of Errors

If many measurables, the error is dominated by the one from
the “worse” measurable:

e t

e t

δ δ≈

What if measure x, but need an error for f(x)?
• Suggest that the error is small
• Do Taylor expansion of f about xbest

( )
( ) ( )best

df x
f x f x x

dx
δ= ±
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Propagation of Errors

Relative error of a power:
nq x

q x
n

q x

δ δ
=

=

General case - function of several variables:
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Propagation of Errors

Example: measuring g with a simple pendulum, 
L-length, T-oscillation period

T=2π (L/g)1/2   � g=4 π2 L/T2

L = 92.95±0.1 cm, T = 1.936±0.004 sec.

 δL/L=0.1% δT/T=0.2%

 δg = 0.004 x 979 cm/sec2 = 4 cm/sec2

22
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2
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Statistical Analysis of Random Errors.

•
•

•

•
•

•
•

••

••
•
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• •• •
••

•
•

•

•
•
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Random: small
Systematic: small

Random: large
Systematic: small

Random: small
Systematic: large

Random: large
Systematic: large
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Statistical Analysis of Random Errors.

•
•

•

•
•

•
•

••

••
•
• •• •
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• •• •
••

•
•

•
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Random: small
Systematic: ?

Random: large
Systematic: ?

Random: small
Systematic: ?

Random: large
Systematic: ?
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Statistical Analysis of Random Errors.

1st case: we knew the value of the measured quantity.
a) not realistic, b) not very interesting
2nd case - realistic, no chance of determining the
systematic error.

Concentrate on random errors and repeat the
measurements several times.

x1, x2, x3, x4, …...
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Statistical Analysis of Random Errors

• measure x several times, get a set of data:
x1, x2, …, xN
• try to estimate the variability (dispersion) of the
measurable and it’s best value.

Example: manufacturer of metal parts
Complaints: non-uniformity of melting temperatures.

Analysis: Pick a representative batch of parts and
measure melting temperatures.
Get a set of data: t1, t2, …, tN for all N parts from the
sample.
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Statistical Analysis of Random Errors

Calculate the average (mean) t:
(our estimate for the true value of t)

Sort the data:

N

best i
i 1

1
t t t

N =

= = ∑

1 2 Nt t ... t≤ ≤ ≤

tj 310 311 312 313 314 315

nj 1 3 8 6 2 0

nj/N 1/20 3/20 8/20 6/20 2/20 0

j j j 1n / N probability of t t t +− ≤ ≤
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Statistical Analysis of Random Errors

N
j ji

i 1 j

t nt
1 normalized probability

N N=

= = −∑ ∑

Plot a histogram.

Increase N � get a smoother histogram.
If the errors are random and small, we get a Gaussian
bell-shaped curve at N � infinity.

But we can get more information on random errors
before that...
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Statistical Analysis of Random Errors

Example: 5 measurements of some value.
71, 72, 72, 73, 71 N

j
i 1

best

x
71 72 72 73 71

x x 71.8
5 N

=+ + + += = = =
∑

Trial
number

M easured
value

Deviation
di

Deviation
squared

1 71 -0.8 0.64

2 72 0.2 0.04

3 72 0.2 0.04

4 73 1.2 1.22

5 71 -0.8 0.64
2

i i i id x x d 0 d 2.8= − = =∑ ∑
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Statistical Analysis of Random Errors

Linear deviations are no good to characterize the
statistics of random errors: have zero average,

Let’s go for squares.

Definition: Standard deviation σx:

( ) ( )
N N 22

x i i
i 1 i 1

1 1
d x x

N N
σ

= =

= = −∑ ∑
Root mean square (RMS) deviation of the measurements

x1, x2, …, xN
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Statistical Analysis of Random Errors

Standard deviation - measure of the accuracy of a
single measurement or of the width of the data
distribution (histogram).

At N�infinity
histogram turns
into a bell-shaped
Gaussian curve.
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Statistical Analysis of Random Errors

Standard deviation in a single measurement:
σx characterizes the average error of the measurements
x1, x2, …, xN. At large N the distribution approaches
Gaussian and P(xtrue- σx < x < xtrue+ σx) = 68%.

If you make a single measurement knowing σx for the
method used, it’s 68% probable that your x is distance
σx or less form xtrue.

You may be 68% confident that the single
measurement is within σx from the correct answer.
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Statistical Analysis of Random Errors

Standard deviation of the mean:

x1, x2, …, xN  suggest xbest = Σxi/N.

How good (accurate) is our knowledge of xbest?

It may be proven that:

xx

1

N
σ σ= Standard deviation of

the mean

Or: Average of N measurements gives a 1/N1/2 smaller
error, than a single measurement.

x
bestx x

N

σ= ±
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Statistical Analysis of Random Errors

Example: Measure elasticity constants of springs.
86, 85, 84, 89, 85, 89, 87, 85, 82, 85

kk 85.7N / m, 2.16N / m 2N / mσ= ≈
If we make 10 measurements and get k 85.7N / m=

kk will be 0.7N / m
10

k 85.7 0.7N / m

σδ ≈

= ±

The more measurements we make or the larger is the
sample, the more accurate is the measurement!!
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Gaussian Distribution

If the errors of the measurement are random and small,
we approach the Gaussian distribution at large N.

µ=5

σ=1
µ=5

σ=3

x x
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Gaussian Distribution

( )2

2x,

b

a

x x1
G exp

22

P(x, x dx) G(x)dx (probability density)

P(a x b) G(x)dx

G(x)dx 1 (normalized)

G(x dx) G(x dx) (symmetric with respect to x)

σ σσ π

∞

−∞

 − = − 
  

+ =

≤ ≤ =

=

+ = −

∫

∫



November 2001 10.001 Introduction to Computer
Methods

Gaussian Distribution

( )

best

2
2

x

x

x 2

x 2

x G(x)dx x x (first moment)

x x G(x)dx (second moment)

remember "exp erimental" x and ?

At N is replaced by .

x G(x)dx 0.68 (68%)

x G(x)dx 0.95 (95%)

σ

σ

σ

σ

σ

σ

∞

−∞
∞

−∞

+

−

+

−

= =

− =
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≈
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∫

∑ ∫
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Least Squares Fitting

So far: Single measurable x, though multiple measure-
ments to get the statistics. Analysis of random errors.

Now: The statistics is known. Multiple measurables y1, y2,
…, yN , at different values of x: x1, x2, …, xN; yi = f(xi). We
are figuring out f(x).

Two possible approaches:
Either : 1. Measure yi,

  2. Plot the data.
  3. Guess the form of y = f(x) & make the fit.

Or:  1. Have an idea of y = f(x).
 2. Set the experiment.
 3. Plot the data to check the initial guess (model).
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Least Squares Fitting

The lore:

1. Get many points.

2. Plot the data.

3. Play with the coordinates (lin-lin, log-lin,

log-log).

4. Look for the simplest possible fits.
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Least Squares Fitting

The simplest case - linear dependence:
y = a x + b.

x1, x2, …, xN  & y1, y2, …, yN

What are the best a and b to fit the data?
• Suggest Gaussian distribution for each yi, know σy.
• Assume the fit curve is the “true” f(x), axi+b is the

“true” value of yi.
• Construct P(y1, y2, …, yN; a,b) – probability of having

the set of data y1, y2, …, yN.
• Maximize P(y1, y2, …, yN; a,b) with respect to a & b

and find the corresponding a and b.
• Compare a and b with theory (if we have any).
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Least Squares Fitting

For a single
measurement: 

For a set of measurements: 
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Least Squares Fitting

( )

( )

2 N

i i i2
i 1y

2 N

i i2
i 1y

2
i i i i

i i

2
x y (ax b) 0

a

2
y (ax b) 0

b

a x b x x y

a x Nb y

χ
σ

χ
σ

=

=

 ∂ = − − + = ∂


∂ = − − + = ∂
 + =


+ =

∑

∑

∑ ∑ ∑
∑ ∑

We have a system of linear equations for a and b:
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Least Squares Fitting

( )

i i i i

2
i i i i i

22
i i

x y x y
a

x y x x y
b , where

x x

−
=

∆
−

=
∆

∆ = −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

The solutions are:

A x + b - least squares fit to the data, or
line of regression of y on x.
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Linear Least Squares, General case

Our fitting function in general case is:

F(x) = a1 f1(x) + a2 f2(x) + … + anfn(x)

Note that the function itself does not have to
be linear for the problem to be linear in the
fitting parameters.

Let us find a compact way to formulate the
least squares problem.
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Linear Least Squares, General case

1 1

1

1 2

Thus we have: vectors x, y and a:

points

... where the data , ... the data,

was taken

fitting
...

parameters

and functions ( ), ( ),..., ( ).

   
   = =   
      
 
 =  
  

N N

n

n

x y

x y

x y

a

a

a

f x f x f x
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Linear Least Squares, General case

i i

1

The problem now looks like:

y = ( ) , where e is a residual:

mismatch between the measured value 

and the one predicted by the fit. 

Let’s intorduce vector e:

...

+

 
 =  
  

i i

N

F x e

e

e

e
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Linear Least Squares, General case

1 1 2 1 1

1 2 2 2 2

1 2

Let us express the problem in matrix notation:

( ) ( ) ... ( )

( ) ( ) ... ( )
Z=

... ... ... ...

( ) ( ) ... ( )

Overall we have now:

y = Z

Fitting problem in matrix notation

 
 
 
 
 
  

⋅ +

n

n

N N n N

f x f x f x

f x f x f x

f x f x f x

a e

N
2

i
i=1

.

Look for min e min( )
  =  
∑ Te e
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Linear Least Squares, General case

( ) ( )( )
( )

( ) ( )

2
N N

2
i i

i=1 i=1 1

Look for min e min y

min

0 1

0

=

     = − =        

− ⋅ ⋅ − ⋅

∂
= ≤ ≤

∂

∂ − ⋅ 
⋅ − ⋅ = ∂ 

∑ ∑ ∑
n

ij j
j

T

T

k

T

k

z a

y z a y z a

e e
for k n

a

y z a
y z a

a
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Linear Least Squares, General case

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

1 2

:,k :,

0

(0 0...1...0) 0

... 0 1

Using Matlab colon notation:

z

Or after putting all n equations together:

∂ 
− ⋅ ⋅ − ⋅ = ∂ 

⋅ ⋅ − ⋅ =

⋅ − ⋅ = ≤ ≤

⋅ ⋅ = ⋅

⋅ ⋅ = ⋅

T

k

T

T

k k Nk

T T

k

T T

a
z y z a

a

z y z a

z z z y z a for k n

z a z y

z z a z y



November 2001 10.001 Introduction to Computer
Methods

Linear Least Squares, General case

In general case linear lest squares problem can be
formulated as a set of linear equations.

Ways to solve:
1. Gaussian elimination.
2. To calculate the matrix inverse:

( ) 1−
= ⋅ ⋅ ⋅T Ta z z z y

Suitable for Matlab, see homework 9.



November 2001 10.001 Introduction to Computer
Methods

Nonlinear Regression (Least Squares)

2-a x
1

i i 1 1 m i i i i

What if the fitting function is not linear in 

fitting parameters?

We get a nonlinear equation (system of equations).

Example:

f(x) = a (1 - e ) + e

y f (x ;a ,a ,..., a ) e  or just y  = f(x ) + e

Again

= +
N

2
i

i=1

 look for the minimum of e with respect

to the fitting parameters.

∑
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Matlab Function FMINSEARCH.

Accepts as input parameters:
1. Name of the function (FUN) to be minimized
2. Vector with initial guess X0 for the fitting parameters
Returns: Vector X of fitting parameters providing the
local minimum of FUN.

Function FUN accepts vector X and returns the scalar
value dependent on X.

In our case (hw10) FUN should calculate
dependent on the fitting parameters
b, m, A1, A2, …

N
2

i
i=1

e∑
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Matlab Function FMINSEARCH.

Syntax:   x = FMINSEARCH(FUN,X0) or
 x = FMINSEARCH(FUN,X0,OPTIONS)

See OPTIMSET for the detail on OPTIONS.

 x = FMINSEARCH(FUN,X0,OPTIONS,P1,P2,..)
in case you want to pass extra parameters to
FMINSEARCH

If no options are set use OPTIONS = [] as a place
holder.

Use “@” to specify the FUN:
x = fminsearch(@myfun,X0)
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Gauss-Newton method for nonlinear regression

i i 1 1 m i i i i

N
2

i i
i=1

y f (x ;a , a ,..., a ) e  or just y  = f(x ) + e

Look for the minimum of e with respect to a .

1. Make an initial guess for a: a0.

2. Linearize the equations (use Taylor expansion 

about a0).

3. Solv

= +

∑

k,j+1 k,j

e for a - correction to a0  a1=a0+ a -

improved a-s and our new initial guess.

4. Back to (1).

5. Repeat until a -a  for any k. ε

∆ → ∆

<
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Gauss-Newton method for nonlinear regression

n
i

i i i i i
j 1 n

n
i

i i i
j 1 n

1 1

N N

Linearization  by Taylor expansion:

f (x , a0)
y f (x ) e f (x , a0) e

a

f (x , a0)
y f (x , a0) e   for i = 1,2,...,N

a

or in matrix form:

D = Z a+e,  where

y f (x , a0)

D= ....

y f (x , a0)

=

=

∂= + ≈ + +
∂

∂− = +
∂

⋅ ∆

− 
 
 
 − 

∑

∑

1 1

1 n

N N

1 n

f (x , a0) f (x , a0)
...

a a

, and Z ... ... ...

f (x , a0) f (x , a0)
...

a a

∂ ∂ 
 ∂ ∂ 

=  
 ∂ ∂ 
 ∂ ∂ 
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Gauss-Newton method for nonlinear regression

Linear regression:  y = Z a e

Now , nonlinear regression : D = Z a+e.

Old good linear equations with a in plce of a, 

D in place of y and Z with partial derivatives 

in place of Z with values of functions.

Sol

⋅ +
⋅ ∆

∆

ve it for a, use a1=a0+ a as the new initial

guess and repeat the procedure untill the 

convergence criteria are met.....

∆ ∆


