
December 2001 10.001 Introduction to Computer
Methods

Course Review

What you hopefully have learned:
1. How to navigate inside MIT computer system:
Athena, UNIX, emacs etc. (GCR)
2. General ideas about programming (GCR):

• formulating the problem, “coding” in English
• translation into computer language
• editing
• compiling + debugging
• running

3. Quite a bit of knowledge of C (GCR, midterm).

December 2001 10.001 Introduction to Computer
Methods

Course Review

4. MATLAB:

• Matlab = matrix laboratory, matrix oriented.

• Any variable is an array by default, thus almost no
declarations. All variables are by default double

• High level language:

• (i) quick and easy coding

• (ii) lots of tools (Spectral Analysis, Image
Processing, Signal Processing, Financial, Symbolic
Math etc.)

• (iii) relatively slow

December 2001 10.001 Introduction to Computer
Methods

Course Review

• Translator - interpreter, reads and executes line after
line, but All Matlab functions are precompiled.

• One (YOU) may add extra functions by creating M-
files.

• Language structure is similar to C:
- MATLAB supports variables, arrays, structures,
subroutines, files, flow of control structures
-MATLAB does NOT support pointers and does not
require variable declarations

December 2001 10.001 Introduction to Computer
Methods

Dealing with Matrices in Matlab

• Matlab has all standard operations & functions
implemented for matrices (& vectors).
• Standard math. functions of matrices operate in
array sense (act on each matrix entry independently:
exp(A), sin(A), sqrt(A) = A.^0.5

>> B = exp(A)
B(i,j) = exp(A(i,j))
• Any matrix multiplication/division or rising matrix
into some power may be both matrix and array
operation.

December 2001 10.001 Introduction to Computer
Methods

Dealing with Matrices in Matlab

• A*B - matrix product of n x m and m x p matrices,
but A.*B - array (element by element) product of two
n x m matrices.
• B=sqrt(A) � Bij=sqrt(Aij), A&B - any matrices,
but B=A^0.5 � A=B*B and A&B should be square.
• Submatrices:
A(1:4,3) - column vector, first 4 elements of the

3-d column of A.
A(:,3) - the 3-d column of A
A(:,[2 4]) - 2 columns of A: 2-d & 4-th.

/

December 2001 10.001 Introduction to Computer
Methods

Dealing with Matrices, Examples

>> C = A + B;
C(k,l) = A(k,l) + B(k,l)

>> C = A*B;
C(k,l) = A(k,m) * B(m,l)

>> C = A.*B
C(k,l) = A(k,l)*B(k,l)

>> C = A^alpha;
>> C = A.^alpha;
C(k,l) = A(k,l)^alpha

Matrix multiplication,
summation over the repeating
index is implied.

Element-wise (array)
operation

December 2001 10.001 Introduction to Computer
Methods

Course Review

I hope you’ve learned the basic linear algebra and it’s
Matlab implications:

1. Matrix(vector) addition/subtraction & multiplication.
Say, what is the difference between a*b’ and a’*b, where
a and b are vectors?
2. Colon notation and operating with submatrices.
Remember, lots of summation, multiplication etc. loops
may be eliminated by using the colon notation (see
solution to hw8-10 for example).
3. Basic Matlab syntax: Given you know C, you may
figure out many Matlab properties by analogy, but still
you are expected to have a clear idea about:

December 2001 10.001 Introduction to Computer
Methods

Course Review

• writing functions in Matlab
• flow of control statements
• How to use desktop & maintain the workspace.
• How to deal with “black boxes”:

i) help FUNCTIONNAME
ii) what does the function do?
iii) what’s in and what’s out?
iv) how to prepare what’s in (usually vectors
and matrices)
v) ideally: what’s inside the black box,
to predict possible problems

December 2001 10.001 Introduction to Computer
Methods

5. You have learned about a set of general problems,
which can be solved by programming:

root finding (GCR),
systems of linear equations,
systems of non-linear equations,
fitting experimental data.

December 2001 10.001 Introduction to Computer
Methods

 Matrix Formulation of SLE

System of linear equations, example:
a11x1 + a12x2 + …+ a1nxn = b1

a21x1 + a22x2 + ….+ a2nxn = b2

…..
an1x1 + an1x2 +…+annxn = bn

A - coefficient matrix, b - load vector

bxA

b

b

b

x

x

x

nn

=⋅



















=





































…
…

…
…

......

 a a a

..

 a a a

 a a a

2

1

2

1

nnn2n1

2n2221

1n12 11

December 2001 10.001 Introduction to Computer
Methods

Gaussian Elimination

Example:

 x + 2 y + z = 0

2 x + 2 y + 3 z = 3

-x + 3 y + 0 z = -4

1. Eliminate x from eqs 2 & 3.

2. Eliminate y from equation 2.

3. Solve eq. 3 for z and backsubstitute to eqs 1&2

4. Solve eq. 2 for y and backsubstitute to eq. 1.

5. Solve eq. 1 for x.

December 2001 10.001 Introduction to Computer
Methods

**)3(
33

)3(
33

*)2(
23

)2(
232

)2(
22

1313212111

)3(

)2(

)1(

bxa

bxaxa

bxaxaxa

=

=+

=++

)2(
232

)2(
3

)3(
3

)2(
2332

)2(
33

)3(
33

bmbb

amaa

−=

−=

Subtract m32 times (2) from (3)*

The new coefficients are give by

Gaussian Elimination (last step)

December 2001 10.001 Introduction to Computer
Methods

Scalability

Code for Gaussian elimination contains 3 loops:

1. makes n-1 runs to eliminate variables

2. k-th run goes through n-k rows (k = 1,. . ., n-1)

3. in i-th row we calculate aij = aij - m akj n-k times

Overall about operations.∑
−

=

−−
1n

1k

)kn)(kn(

Time scales as n3 ! A rather poor scalability.

December 2001 10.001 Introduction to Computer
Methods

LU factorization.

A ------> U (upper diagonal) A = LU

b -------> c b = L c

A = LU
L-1 describes Gussian elimination.

c = L-1 b

GE

GE

December 2001 10.001 Introduction to Computer
Methods

Numerical Stability

Problems appear if we have small numbers at the
diagonal of the coefficients matrix. Solution -
”pivoting”.

Pivoting algorithm:

Searches for the largest aik in each row below the

current one to use for the next elimination step, and

rearranges the rows so that mik is always less than

one.

December 2001 10.001 Introduction to Computer
Methods

 Introduction to Data Analysis

• Random & Systematic Errors

• How to Report and Use Experimental Errors

• Statistical Analysis of Data
– Statistics of random errors

– Error propagation, functions of measurables

– Plotting and displaying the data

– Fitting the data: linear and non-linear regression

December 2001 10.001 Introduction to Computer
Methods

Statistical Analysis of Random Errors.

∑
=

==
N

1i
ibest x

N

1
xxMean

Deviation xxd ii −=

Standard
deviation,
root mean square
of the measurements

2
N

1i
i

2
N

1i
ix)xx(

N

1
)d(

N

1 −== ∑∑
==

σ

December 2001 10.001 Introduction to Computer
Methods

Propagation of Errors

If errors are independent and random:
for the sum/difference the errors of the independent items are
added in quadrature.

() ()

() () () ()

2 2

2 2 2 2

... (...)

... ...

... ...

q x y

q x y x y

q x z u w

q x z u w

x z u w

δ δ δ δ δ

δ δ δ δ δ
δ δ δ δ

= +

= + ≤ +

= + + − + +

= + + + + + ≤

≤ + + + + +

December 2001 10.001 Introduction to Computer
Methods

Propagation of Errors

2 2 2 2

...

...

... ...

... ...

x z
q

u w

q x z u w

q x z u w

x z u w

x z u w

δ δ δ δ δ

δ δ δ δ

× ×=
× ×

       = + + + + + ≤              

≤ + + + + +

Relative error of product/quotient:

Relative errors of independent measurables are
added in quadrature.

December 2001 10.001 Introduction to Computer
Methods

Propagation of Errors

Error of a power:
nq x

q x
n

q x

δ δ
=

=

General case - function of several variables:

2 2

q(x,....., z)

q q
q x x

x z
δ δ δ∂ ∂   = + +   ∂ ∂   

December 2001 10.001 Introduction to Computer
Methods

Gaussian Distribution

()2

2x,

b

a

x x1
G exp

22

P(x, x dx) G(x)dx (probability density)

P(a x b) G(x)dx

G(x)dx 1 (normalized)

G(x dx) G(x dx) (symmetric with respect to x)

σ σσ π

∞

−∞

 − = − 
  

+ =

≤ ≤ =

=

+ = −

∫

∫

For a large number of measurements and random small
errors the distribution of experimental data is Gaussian:

December 2001 10.001 Introduction to Computer
Methods

Least Squares Fitting

Multiple measurables y1, y2, …, yN , at different values of x:
x1, x2, …, xN; yi=f(xi).

Need to fit measurables yi, to function y=(x).
The simplest case - linear dependence:
y = a x + b.

What are the best a and b to fit the data?

1. Suggest Gaussian distribution for each yi, know sy.
2. Construct P(y1, y2, …, yN;a,b).
3. Maximize P(y1, y2, …, yN;a,b) with respect to a & b.
4. Find a and b delivering the max. value of
P(y1, y2, …, yN;a,b).

December 2001 10.001 Introduction to Computer
Methods

Least Squares Fitting

()

()

2

i i
i 2

y y

2

1 2 N N
y

2N
i i2

2
i 1 y

2 2

y (ax b)1
P(y) exp

2

1
P(y , y ,..., y) exp ,

2

y (ax b)

We look for : 0 & 0
a b

σ σ

χ
σ

χ
σ

χ χ
=

 − + − 
  

 
− 

 

− +
=

∂ ∂= =
∂ ∂

∑

�

�

Probability of a single
measurement:

Probability of a set of
measurements:

December 2001 10.001 Introduction to Computer
Methods

Least Squares Fitting

()

i i i i

2
i i i i i

22
i i

x y x y
a

x y x x y
b , where

x x

−
=

∆
−

=
∆

∆ = −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

We have a system of two linear equations for a&b with
the solutions:

A x + b - least squares fit to the data, or
line of regression of y on x.

December 2001 10.001 Introduction to Computer
Methods

Linear Least Squares, General case

Our fitting function in general case is:

F(x) = a1 f1(x) + a2 f2(x) + … + anfn(x)

f1, f2,…, fn - known functions of x,
a1, a1,…, an – unknown fitting parameters

Note that the function itself does not have to be
linear for the problem to be linear in the fitting
parameters.

There is a compact way to formulate the least
squares problem: matrix form.

December 2001 10.001 Introduction to Computer
Methods

Linear Least Squares, General case

1 1 2 1 1

1 2 2 2 2

1 2

Let us express the problem in matrix notation:

() () ... ()

() () ... ()
Z=

...

() () ... ()

Overall we have now:

y = Z

Fitting problem in matrix notation

 
 
 
 
 
  

⋅ +

n

n

N N n N

f x f x f x

f x f x f x

f x f x f x

a e

N
2

i
i=1

.

Look for min e min()
  = 
 
∑ Te e

() yzzzaoryzazz T1TTT ⋅⋅⋅=⋅=⋅⋅ −

December 2001 10.001 Introduction to Computer
Methods

Nonlinear Regression (Least Squares)

2-a x
1

i i 1 1 m i i i i

What if the fitting function is not linear in

fitting parameters?

We get a nonlinear equation (system of equations).

Example:

f(x) = a (1 - e) + e

y f (x ;a ,a ,..., a) e or just y = f(x) + e

Again

= +
N

2
i

i=1

 look for the minimum of e with respect

to the fitting parameters.

∑

December 2001 10.001 Introduction to Computer
Methods

Nonlinear Regression (Least Squares)





















∂
∂

∂
∂

∂
∂

∂
∂

=
















−

−
=

+∆⋅=

=+
∂

∂−=−

+
∂

∂−+≈+=

∑

∑

=

=

n

N

n

N

n

NN

i

n

j j

i
jjii

i

n

j j

i
jjiiii

a

axf

a

axf

a

axf

a

axf

z

axfy

axfy

D

whereeazD

Nforie
a

axf
aaaxfy

e
a

axf
aaaxfeaxfy

)0,(
...

)0,(
.........

)0,(
...

)0,(

)0,(

...

)0,(

,

:formmatrixinor

,...,2,1,
)0,(

)0()0,(

)0,(
)0()0,(),(

1

1

1

11

1

1

December 2001 10.001 Introduction to Computer
Methods

Nonlinear Regression (Least Squares)

Linear regression: y = z · a + e � zT · z · a = zT · y
Now, nonlinear regression: D = z · ∆a + e � zT · z · ∆a = zT · D

Old good linear equations with ∆a in place of a, D in place of y
and z with partial derivatives in place of z with values of fitting
functions.

Besides, in case of linear regression it was enough to solve the
SLE once, while now solving the above system we just get the
next approximation to the best fit.

December 2001 10.001 Introduction to Computer
Methods

Systems of Nonlinear Equations

A system of non-linear equations:
f1(x1,x2,x,…,xN)=0
f2(x1,x2,x,…,xN)=0 => f(x)=0

….. Start from initial guess x[0]

fN(x1,x2,x,…,xN)=0

2N N N
i i

j j ki i j j k
j 1 j 1 k 1j j k

[0]

As before expand each equation at the solution x with f(x)=0:

f (x) 1 f (x)
f (x) f (x) (x x) (x x) (x x) ...

x 2 x x

Assume x is close to x and discard quadratic terms

∧ ∧

∧ ∧
∧ ∧ ∧ ∧

= = =

∧

∂ ∂= + − + − − +
∂ ∂ ∂∑ ∑∑

N
i

ji j
j 1 j

:

f (x)
f (x) (x x)

x

∧
∧

=

∂≈ −
∂∑

December 2001 10.001 Introduction to Computer
Methods

• Linearize the system of equations.
• Pick an initial guess x0.
• Solve linearized system for ∆x – correction to the initial

guess.
• Use x0 + ∆x as initial guess, and solve the linear system

again.
• Repeat this procedure until the convergence criterion is

satisfied.

Matrix formulation of linearized equations:
J(x[i]) ∆ x[i] = -f(x[i]), where J – Jacobian matrix,
Jij = , ∆ x[i] = x[i+1] - x[i] .

ji xf ∂∂ /

