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In the last two classes, we learned to compute statistical measures from a sample of
observations on a statistical variable. Moreover, we discussed how the sample statistics
can be used to arrive at a model for the entire population. Today, we discuss how we
can measure the correlation, i.e., the degree of linear association, between two statistical
variables. Once again, let's try to learn the key concepts through an example.

1 Example

The following data consist of observations for the weights of 10 di�erent automobiles (in
1000 pounds) and the corresponding fuel consumptions (gallons per 100 miles).
Weight (x) Fuel Consumption (y)
3.4 5.5
3.8 5.9
4.1 6.5
2.2 3.3
2.6 3.6
2.9 4.6
2.0 2.9
2.7 3.6
1.9 3.1
3.4 4.9
We would like to �nd out how y is correlated to x and whether we could represent that
correlation in a functional form valid within the range of the data.
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Figure 1: Fuel Consumption vs. Weight and the Best Fit Line

Mean Weight = 2.9

Mean Fuel Consumption = 4.39

2 Correlation Analysis

The simplest way to �nd out qualitatively the correlation is to plot the data. In the case
of our example, as seen from Figure 1, a strong positive correlation between y and x is
evident, i.e., the plot reveals that as the weight increases, the fuel consumption increases
as well. How can we quantify the degree of correlation? This is usually done by specifying
the correlation coe�cient R, de�ned as

R =
1

n� 1

nX
i=1

xi � �x

�x

yi � �y

�y
; (1)

where �x and �x denote the sample mean and the sample standard deviation respectively
for the variable x and �y and �y denote the sample mean and the sample standard
deviation respectively for the variable y.

Now, let's assume that a perfect linear relationship exists between the variables x
and y. i.e., yi = axi + b for i = 1; 2; � � � ; n with a 6= 0. Now verify using the de�nitions
of the mean and the variance that �y = a�x + b and �y = jaj�x. This implies from Eq.
1 that R = a=jaj. Or in other words, R = 1 if a > 0 and R = �1 if a < 0. The case
R = 1 corresponds to the maximum possible linear positive association between x and
y, meaning that all the data points will lie exactly on a straight line of positive slope.

2



Similarly, R = �1 corresponds to the maximum possible negative association between
the statistical variables x and y. In general, �1 � R � 1 with the magnitude and the
sign of R representing the strength and direction respectively of the association between
the two variables. For the data given in Figure 1, R = 0:977 implying a strong positive
correlation between the fuel consumption and the weight of the automobile.

3 Regression Analysis: Method of Least Squares

Once we have established that a strong correlation exists between x and y, we would
like to �nd suitable coe�cients a and b so that we can represent y using a best �t line
ŷ = ax + b within the range of the data. The method of least squares is a very common
technique used for this purpose. The rationale used here is as follows. For each pair of
observations (xi; yi), we de�ne the error ei as

ei = (axi + b� yi): (2)

Now, we �nd a and b in such a way that the sum of the squared errors over all the
observations is minimized. i.e., the quantity we are interested in minimizing is

S(a; b) =
nX

i=1

[axi + b� yi]
2: (3)

We know from calculus that to minimize this, we need @S=@a � 0 and @S=@b � 0. These
conditions yield

nb +

 
nX

i=1

xi

!
a =

nX
i=1

yi

 
nX

i=1

xi

!
b+

 
nX

i=1

x2i

!
a =

nX
i=1

xiyi: (4)

Eq. 4 gives two linear equations in a and b, which can be solved to get

a =
n
Pn

i=1 xiyi � (
Pn

i=1 xi) (
Pn

i=1 yi)

n
Pn

i=1 x
2

i � (
Pn

i=1 xi)
2

; (5)

with b obtained through subsequent substitution of a in either of the two equations given
by Eq. 4.

In the case of the data given in Figure 1, the best �t line has a slope of 1:64 and
intercept of �0:36. Or in other words, ŷ = 1:64x � 0:36. Note that this is only a best
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�t line which can be used to compute the fuel consumption given the weight within or

very close to the range of the measurements. Its predictive power is rather limited. For
instance, for x = 0, we get y = �0:36, which is non-physical. A physical model for the
fuel consumption would have predicted 0 consumption of fuel for 0 weight.

How are the slope and the intercept of the best �t line related to the correlation
coe�cient? To examine this, we rewrite Eq. 5 as

a =
n
Pn

i=1 xiyi � (
Pn

i=1 xi) (
Pn

i=1 yi)

n
Pn

i=1 x
2

i � (
Pn

i=1 xi)
2

=

Pn
i=1 xiyi � (

Pn
i=1 xi) (

Pn
i=1 yi) =nPn

i=1 x
2

i � (
Pn

i=1 xi)
2=n

=

Pn
i=1(xi � �x)(yi � �y)Pn

i=1 (x� �x)
2

(Verify this step)

=
(n� 1)R�x�y
(n� 1)�2x

(See Eq. 1)

= R
�y
�x

: (6)

Similarly, from the �rst of Eq. 4 and the above result we get

b = �y �R
�y
�x

�x; (7)

so that the equation of the best �t line can be represented by

ŷ = �y + (R
�y
�x

)(x� �x): (8)

4 Tests for the Regression Equation

Correlation analysis gives us the correlation coe�cient which is a measure of the strength
and the direction of the linear association between the variables. This information can
be used to decide the suitability of model calibration using a linear regression analysis.
The square of the correlation coe�cient may be thought of as the percentage of the total
variation in y that is explained by the association of y and x. Hence, for R = 1, all the
variation is explained by the linear association between the two variables. In this case,
all the observations will lie on a straight line of slope �y=�x, passing through the point
(�x; �y).

4



Another measure used to evaluate the goodness of �t is the standard deviation of
the errors �e, de�ned as

�2e =
1

�

nX
i=1

(ŷi � yi)
2; (9)

where ŷi = axi + b and � represents the number of degrees of freedom. The number of
degrees of freedom is equal to the sample size minus the number of unknowns estimated
in by the regression procedure. In this case, we have the slope and the intercept as the
unknowns, so � = n� 2. If �e is very small, we attribute a high reliability to the results
of the regression analysis.

4.1 The Hypotheses behind Regression Analysis

The method of least squares explained above makes at least 4 assumptions, the adherence
to which may be checked a posteriori. These assumptions concern with the error ei =
ŷi � yi, i.e., the di�erence between the best �t prediction and the observation. The
assumptions are that these errors (a). are mutually independent (b). have zero mean
(c). have a constant variance across all the values of the statistical variables and (d). are
normally distributed. Violation of these assumptions can be identi�ed in many cases by
simply examining a plot of ei vs. xi. Note that the �rst of Eq. 4 guarantees that the
mean value of ei is 0 within the precision of the computation (To see this better rewrite
that equation as

P
(b+ axi � yi) = 0). However, this is not necessarily true of non-linear

regression analysis.

4.2 Nonlinear Models and Linear Regression

In many cases, simple transformation of variables help to recast a non-linear model in a
linear form. For instance, suppose we wish to �t certain kinetic data to the exponential
model ŷ = � exp(�x). There are non-linear regression programs which accomplish this
task, but we can use a linear regression procedure if we try to �t y� � ln(ŷ) vs. x. This
is because, we have ln(ŷ) = ln(�) + �x and letting y� = ln(ŷ) and �� = ln(�), we get
y� = �� + �x. The linear regression procedure will give �� and � for the best �t.
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