Problem 12

a) Circulation rate of refrigerant for a cycle that has a throttle valve

Here is the PH diagram.

So to get the circulation rate, we use
\& $=\mathrm{nk} \mathrm{Q}_{\mathrm{c}}$
where Q is the cooling rate of the cycle (the total amount of heat that the refrigerant extracts from the room in the evaporator per unit time), m is the flow rate of the refrigerant in the cycle (mass per unit time) and Q_{c} is the heat given to the evaporator per unit mass of refrigerant. (Note that the nomenclature is slightly different than the book)

Since there is no work done in the evaporator,
$\mathrm{Q}_{\mathrm{c}}=\Delta \mathrm{H}=\mathrm{H}_{2}-\mathrm{H}_{1}$

Point 2 is saturated vapor at $-15^{\circ} \mathrm{F}$. So we can use the table at page 300 to get $\mathrm{H}_{2}=100.799 \mathrm{Btu} / \mathrm{lb}$

The enthalpy of point 1 is the same as that of point 4 since the expansion process through the throttle valve is isenthalpic. Point 4 is saturated liquid at $80^{\circ} \mathrm{F}$. Therefore,
$\mathrm{H}_{1}=\mathrm{H}_{4}=37.978 \mathrm{Btu} / \mathrm{lb}$
$\mathrm{Q}_{\mathrm{c}}=100.799-37.978=62.821 \mathrm{Btu} / \mathrm{lb}$.
Since
$\mathrm{Q}=5 \mathrm{Btu} / \mathrm{s}$
Therefore,
$\mathrm{m}=5 / 62.821=0.0796 \mathrm{lb} / \mathrm{s}$
b) Circulation rate for a cycle with a turbine

The refrigerant expands in the turbine isentropically. So the entropy of point 4 is equal to the entropy of point 1. The PH diagram of the cycle looks like this.

Entropy of point 4 from the table
$\mathrm{S}_{4}=\mathrm{S}_{1}=0.07892 \mathrm{Btu} / \mathrm{lb} \mathrm{R}$

Method 1

Get the entropy of point 2 from the table (sat. vap. at $-15^{\circ} \mathrm{F}$)
$\mathrm{S}_{2}=0.22714 \mathrm{Btu} / \mathrm{lb} \mathrm{R}$
Therefore the change in entropy across the evaporator
$\Delta \mathrm{S}=\mathrm{S}_{2}-\mathrm{S}_{1}=0.22714-0.07892=0.14822 \mathrm{Btu} / \mathrm{lb} \mathrm{R}$
Assuming that the process is reversible (a good assumption for evaporation at constant temperature)
$\Delta \mathrm{S}=\mathrm{Q}_{\mathrm{c}} / \mathrm{T}_{\mathrm{c}}$
$\mathrm{Tc}=-15+459.67=444.67 \mathrm{R}$
Therefore,
$\mathrm{Q}_{\mathrm{c}}=0.14822 * 444.67=65.909 \mathrm{Btu} / \mathrm{lb}$
$\mathrm{m}=5 / 65.909=0.0759 \mathrm{lb} / \mathrm{s}$

Method 2

Since we know the values of the entropy of saturated liquid and vapor at $-15^{\circ} \mathrm{F}$, we can get the mass fraction of the vapor in the stream at point 1.
$S^{1}=0.01733 \mathrm{Btu} / \mathrm{lb}$
$S^{\vee}=S_{2}=0.22714 \mathrm{Btu} / \mathrm{lb}$

Using the lever-arm principle, we get
$x^{v}=\frac{S-S^{1}}{S^{v}-S^{1}}$

Therefore,
$\mathrm{x}^{\mathrm{v}}=(0.07892-0.01733) /(0.22714-0.01733)=0.2936$
We now can calculate the enthalpy of point 1 ,
$\mathrm{H}_{1}=\mathrm{x}^{\mathrm{v}} \mathrm{H}^{\mathrm{v}}+\left(1-\mathrm{x}^{\mathrm{v}}\right) \mathrm{H}^{\mathrm{l}}$

At-15 F,
$\mathrm{H}^{1}=7.505 \mathrm{Btu} / \mathrm{lb}$
$\mathrm{H}^{\mathrm{v}}=\mathrm{H}_{2}=100.799 \mathrm{Btu} / \mathrm{lb}$

Therefore,
$\mathrm{H}_{1}=0.2936 * 100.799+(1-0.2936) * 7.505=34.892 \mathrm{Btu} / \mathrm{lb}$
$\mathrm{Q}_{\mathrm{c}}=100.799-34.892=65.907 \mathrm{Btu} / \mathrm{lb}$
$\mathrm{m}=5 / 65.907=0.0759 \mathrm{lb} / \mathrm{s}$
c) Circulation rate for a cycle with a heat exchanger

The cycle is modified to include a heat exchanger that cools down the liquid coming out of the condenser by heating up the vapor coming out of the evaporator. The cycle and the PH diagram are shown.

We need to get the enthalpy of point 4 '. We can assume that the heat exchanger is well insulated. From an energy balance on the heat exchanger (energy in = energy out),
$\mathrm{H}_{4}+\mathrm{H}_{2}=\mathrm{H}_{4},+\mathrm{H}_{2}$,
$\mathrm{H}_{1}=\mathrm{H}_{4},=\mathrm{H}_{4}+\mathrm{H}_{2}-\mathrm{H}_{2}$,
We assume that the pressure drop though the heat exchanger is negligible. That makes the pressure of point 2^{\prime} equals the pressure of point 2 , which we can get from the table.
$\mathrm{P}_{2}=14.667 \mathrm{psia}=\mathrm{P}_{2}$,
We can either use the chart to determine the location of point 2 ' or we can use the tables of superheated vapor given in problem 8 (attached) at $\mathrm{P}=14.696$ psia. From the table, we get, $\mathrm{H}_{2},=117.5 \mathrm{Btu} / \mathrm{lb}$

Therefore,
$\mathrm{H}_{1}=37.978+100.799-117.5=21.277 \mathrm{Btu} / \mathrm{lb}$
$\mathrm{Q}_{\mathrm{c}}=\mathrm{H}_{2}-\mathrm{H}_{1}=100.799-21.277=79.522 \mathrm{Btu} / \mathrm{lb}$
$\mathrm{m}=5 / 79.522=0.0629 \mathrm{lb} / \mathrm{s}$
d) COP of the cycle

The coefficient of performance is defined as $\omega=\mathrm{Q}_{\mathrm{c}} / \mathrm{W}_{\mathrm{s}}$

We need to get the net shaft work for the three different processes. For part a, work is given to the compressor. Therefore,
$\mathrm{W}_{\mathrm{s}}=\mathrm{W}_{\text {compressor }}=\mathrm{H}_{3}-\mathrm{H}_{2}$
The entropy of point 3 is the same as the entropy of point 2.
$\mathrm{S}_{3}=\mathrm{S}_{2}=0.22714 \mathrm{Btu} / \mathrm{lb} \mathrm{R}$
If we assume that the pressure drop in the condenser is negligible, therefore the pressure of point 3 is the same as the pressure of point 4 , which we can get from the table.
$\mathrm{P}_{3}=\mathrm{P}_{4}=101.37 \mathrm{psia}$
We can get more tables for this refrigerant from the web page stated in problem 8. http://www.dupont.com/suva/na/usa/sa/techinfo/engg.html. Knowing the pressure and the entropy of point 3, we locate the point and get the enthalpy (See attached table). Interpolating, we get
$\mathrm{H}_{3}=116.6+(0.22714-0.2248) /(0.2291-0.2248) *(119.0-116.6)=117.9 \mathrm{Btu} / \mathrm{lb}$
Therefore,
$\mathrm{W}_{\text {compressor }}=117.9-100.799=17.1 \mathrm{Btu} / \mathrm{lb}$

$$
\omega=62.821 / 17.1=3.672
$$

For part b, the net work equals
$\mathrm{W}_{\mathrm{s}}=\mathrm{W}_{\text {compressor }}+\mathrm{W}_{\text {turbine }}$
$\mathrm{W}_{\text {turbine }}=\mathrm{H}_{1}-\mathrm{H}_{4}=34.892-37.978=-3.086 \mathrm{Btu} / \mathrm{lb}$
$\mathrm{W}_{\mathrm{s}}=17.1-3.086=14.014 \mathrm{Btu} / \mathrm{lb}$

$$
\omega=65.907 / 14.014=4.703
$$

For part c, the compressor work equals
$\mathrm{W}_{\text {compressor }}=\mathrm{H}_{3}-\mathrm{H}_{2}$,
We get H_{3} using the fact that the process is isentropic.
$\mathrm{S}_{3}=\mathrm{S}_{2},=0.2614 \mathrm{Btu} / \mathrm{lb} \mathrm{R}$
Using the same table at $\mathrm{P}=100 \mathrm{psia}$ and interpolating for H_{3}, we get,
$\mathrm{H}_{3}=137.9+(0.2614-0.2608) /(0.2645-0.2608) *(140.3-137.9)=138.3 \mathrm{Btu} / \mathrm{lb}$

Therefore,
$\mathrm{W}_{\text {compressor }}=138.3-117.5=20.8 \mathrm{Btu} / \mathrm{lb}$

$$
\omega=79.522 / 20.8=3.823
$$

TABLE 2 (continued)
HFC-134a Superheated Vapor-Constant Pressure Tables
Volume in $\mathrm{ft}^{3} / \mathrm{lb} \quad \mathrm{H}=$ Enthalpy in $\mathrm{Btu} / \mathrm{lb} \quad \mathrm{S}=$ Entropy in $\mathrm{Btu} /(\mathrm{lb})$ ($\left.{ }^{\circ} \mathrm{R}\right) \quad \mathrm{V}_{\mathrm{s}}=$ Velocity of Sound in $\mathrm{ft} / \mathrm{sec}$,$=$ Heat Capacity at Constant Pressure in $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \quad \mathrm{Cp} / \mathrm{Cv}=$ Heat Capacity Ratio (Dimensionless)

TEMP ${ }^{\circ}{ }^{\circ}$	PRESSURE $=13.00$ PSIA							PRESSURE $=14.00 \mathrm{PSIA}$						$\begin{gathered} \text { TEMP } \\ { }^{\circ} \mathrm{F} \end{gathered}$
	V	H	S	Cp	Cp/Cv	v_{3}		V	H	S	Cp	$\mathrm{Cp} / \mathrm{Cv}$	v_{2}	
$\begin{aligned} & -19.7 \\ & -19.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01159 \\ & 3.41763 \end{aligned}$	$\begin{array}{r} 6.1 \\ 100.2 \end{array}$	$\begin{aligned} & 0.0142 \\ & 0.2281 \end{aligned}$	$\begin{aligned} & 0.3026 \\ & 0.1864 \end{aligned}$	$\begin{aligned} & 1.5041 \\ & 1.1527 \end{aligned}$	$\begin{array}{r} 2484.1 \\ 476.9 \end{array}$	$\left\lvert\, \begin{aligned} & \text { SAT UIO } \\ & \text { SAT VAP } \end{aligned}\right.$	$\begin{aligned} & 0.01163 \\ & 3.18776 \end{aligned}$	$\begin{array}{r} 7.0 \\ 100.7 \\ \hline \end{array}$	$\begin{aligned} & 0.0161 \\ & 0.2277 \end{aligned}$	$\begin{aligned} & 0.3035 \\ & 0.1876 \end{aligned}$	$\begin{aligned} & 1.5044 \\ & 1.1535 \end{aligned}$	$\begin{array}{r} 2459.9 \\ 477.6 \end{array}$	$\begin{aligned} & -16.8 \\ & -16.8 \\ & \hline \end{aligned}$
-10	3.50508	102.0	0.2322	0.1876	1.1476	482.9		3.24570	101.9	0.2305	0.1885	1.1498	481.8	-10
$\begin{array}{r} 0 \\ 10 \\ 20 \\ 30 \\ 40 \end{array}$	$\begin{aligned} & 3.59454 \\ & 3.684460 \\ & 3.77216 \\ & 3.85951 \\ & 3.94633 \end{aligned}$	$\begin{aligned} & 103.9 \\ & 105.8 \\ & 107.7 \\ & 109.7 \\ & 111.6 \end{aligned}$	$\begin{aligned} & 0.2363 \\ & 0.2404 \\ & 0.2444 \\ & 0.2484 \\ & 0.2523 \end{aligned}$	$\begin{aligned} & 0.1891 \\ & 0.1907 \\ & 0.1924 \\ & 0.1941 \\ & 0.1959 \end{aligned}$	$\begin{aligned} & 1.1429 \\ & 1.1387 \\ & 1.1349 \\ & 1.1314 \\ & 1.1282 \end{aligned}$	488.8 494.7 500.4 506.0 511.5		$\begin{aligned} & 3.32889 \\ & 3.41180 \\ & 3.49406 \\ & 3.57654 \\ & 3.65764 \end{aligned}$	$\begin{aligned} & 103.8 \\ & 105.7 \\ & 107.7 \\ & 109.6 \\ & 111.5 \end{aligned}$	$\begin{aligned} & 0.2347 \\ & 0.2388 \\ & 0.2429 \\ & 0.2468 \\ & 0.2508 \end{aligned}$	$\begin{aligned} & 0.1898 \\ & 0.1913 \\ & 0.1929 \\ & 0.1946 \\ & 0.1964 \end{aligned}$	$\begin{aligned} & 1.1448 \\ & 1.1448 \\ & 1.1363 \\ & 1.1327 \\ & 1.1294 \end{aligned}$	4879 493.8 499.5 505.2 510.7	$\begin{array}{r} 0 \\ 10 \\ 20 \\ 30 \\ 40 \end{array}$
$\begin{aligned} & 50 \\ & 60 \\ & 70 \\ & 80 \\ & 90 \end{aligned}$	$\begin{aligned} & 4.03226 \\ & 4.11862 \\ & 4.20345 \\ & 4.28816 \\ & 4.37254 \end{aligned}$	$\begin{aligned} & 113.6 \\ & 115.6 \\ & 117.6 \\ & 119.6 \\ & 121.7 \end{aligned}$	$\begin{aligned} & 0.2562 \\ & 0.2601 \\ & 0.2639 \\ & 0.2677 \\ & 0.2715 \end{aligned}$	$\begin{aligned} & 0.1978 \\ & 0.1997 \\ & 0.2017 \\ & 0.2007 \\ & 0.2057 \end{aligned}$	$\begin{aligned} & 1.1253 \\ & 1.1225 \\ & 1.1200 \\ & 1.1177 \\ & 1.1155 \end{aligned}$	$\begin{aligned} & 516.8 \\ & 522.1 \\ & 527.3 \\ & 5324 \\ & 537.5 \end{aligned}$		$\begin{aligned} & 3.73832 \\ & 3.81825 \\ & 3.89712 \\ & 3.97614 \\ & 4.05515 \end{aligned}$	$\begin{aligned} & 113.5 \\ & 115.5 \\ & 117.5 \\ & 119.6 \\ & 121.6 \end{aligned}$	$\begin{array}{r} 0.2547 \\ 0.2586 \\ 0.2624 \\ 0.2662 \\ 0.2700 \end{array}$	$\begin{aligned} & 0.1982 \\ & 0.2001 \\ & 0.2020 \\ & 0.2040 \\ & 0.2060 \end{aligned}$	$\begin{aligned} & 1.1263 \\ & 1.1235 \\ & 1.1209 \\ & 1.1185 \\ & 1.1162 \end{aligned}$	516.1 521.5 526.7 531.9 536.9	$\begin{aligned} & 50 \\ & 60 \\ & 70 \\ & 80 \\ & 90 \end{aligned}$
$\begin{aligned} & 100 \\ & 110 \\ & 120 \\ & 130 \\ & 140 \end{aligned}$	$\begin{aligned} & 4.45831 \\ & 4.45133 \\ & 4.62535 \\ & 4.71032 \\ & 4.79386 \end{aligned}$	$\begin{aligned} & 123.7 \\ & 125.8 \\ & 127.9 \\ & 130.0 \\ & 132.2 \end{aligned}$	0.2752 0.2789 0.2826 0.2882 0.2898	0.2077 0.2097 0.2118 0.2138 0.2159	$\begin{aligned} & 1.1134 \\ & 1.1115 \\ & 1.1097 \\ & 1.1079 \\ & 1.1063 \end{aligned}$	542.5 547.4 5522 557.0 561.7		$\begin{aligned} & 4.13394 \\ & 4.21408 \\ & 4.29185 \\ & 4.36872 \\ & 4.44642 \end{aligned}$	$\begin{aligned} & 123.7 \\ & 125.8 \\ & 127.9 \\ & 130.0 \\ & 132.2 \end{aligned}$	$\begin{aligned} & 0.2737 \\ & 0.2774 \\ & 0.2811 \\ & 0.2847 \\ & 0.2882 \end{aligned}$	$\begin{aligned} & 0.2080 \\ & 0.2100 \\ & 0.2120 \\ & 0.2140 \\ & 0.2161 \end{aligned}$	1.1141 1.1121 1.1102 1.1094 1.1068	5419 546.9 551.7 556.6 561.3	$\begin{aligned} & 100 \\ & 110 \\ & 120 \\ & 130 \\ & 140 \end{aligned}$
$\begin{aligned} & 150 \\ & 160 \\ & 170 \\ & 180 \\ & 190 \end{aligned}$	$\begin{aligned} & 4.87567 \\ & 4.96032 \\ & 5.04286 \\ & 5.12558 \\ & 5.20933 \end{aligned}$	$\begin{aligned} & 134.4 \\ & 136.5 \\ & 138.8 \\ & 141.0 \\ & 143.2 \end{aligned}$	$\begin{aligned} & 0.2934 \\ & 0.2970 \\ & 0.3005 \\ & 0.3040 \\ & 0.3075 \end{aligned}$	$\begin{aligned} & 0.2179 \\ & 0.2200 \\ & 0.2220 \\ & 0.2241 \\ & 0.2261 \end{aligned}$	$\begin{aligned} & 1.1047 \\ & 1.1033 \\ & 1.1018 \\ & 1.1005 \\ & 1.0992 \end{aligned}$	$\begin{aligned} & 565.4 \\ & 571.0 \\ & 575.6 \\ & 580.1 \\ & 584.6 \end{aligned}$		$\begin{aligned} & 4.52489 \\ & 4.60193 \\ & 4.67946 \\ & 4.75737 \\ & 4.89325 \end{aligned}$	$\begin{aligned} & 134.3 \\ & 136.5 \\ & 138.7 \\ & 141.0 \\ & 143.2 \end{aligned}$	$\begin{aligned} & 0.2919 \\ & 0.2955 \\ & 0.2990 \\ & 0.3026 \\ & 0.3060 \end{aligned}$	$\begin{aligned} & 0.2181 \\ & 0.2202 \\ & 0.2222 \\ & 0.2222 \\ & 0.2262 \end{aligned}$	$\begin{aligned} & 1.1052 \\ & 1.1037 \\ & 1.1022 \\ & 1.1008 \\ & 1.0995 \end{aligned}$	565.0 570.6 575.2 579.8 584.3	$\begin{aligned} & 150 \\ & 160 \\ & 170 \\ & 180 \\ & 190 \end{aligned}$
$\begin{aligned} & 200 \\ & 210 \\ & 220 \\ & 230 \\ & 240 \end{aligned}$	$\begin{aligned} & 5.29101 \\ & 5.37346 \\ & 5.45952 \\ & 5.54017 \\ & 5.62114 \end{aligned}$	$\begin{aligned} & 1455 \\ & 147.8 \\ & 150.1 \\ & 152.4 \\ & 154.8 \end{aligned}$	$\begin{aligned} & 0.3110 \\ & 0.314 \\ & 0.3179 \\ & 0.3213 \\ & 0.3247 \end{aligned}$	0.2281 0.2302 0.2322 0.2342 0.2362	$\begin{aligned} & 1.0980 \\ & 1.0988 \\ & 1.0956 \\ & 1.0945 \\ & 1.0935 \end{aligned}$	589.0 593.4 597.8 602.1 606.4		$\begin{aligned} & 4.91159 \\ & 4.98753 \\ & 5.06329 \\ & 5.14139 \\ & 5.21921 \end{aligned}$	$\begin{aligned} & 145.5 \\ & 147.8 \\ & 150.1 \\ & 152.4 \\ & 154.8 \end{aligned}$	$\begin{aligned} & 0.3095 \\ & 0.3130 \\ & 0.3164 \\ & 0.3198 \\ & 0.3232 \end{aligned}$	$\begin{aligned} & 0.2283 \\ & 0.2303 \\ & 0.2323 \\ & 0.2343 \\ & 0.2362 \end{aligned}$	$\begin{aligned} & 1.0993 \\ & 1.0971 \\ & 1.0959 \\ & 1.0948 \\ & 1.0987 \end{aligned}$	5887 593.1 597.5 601.9 606.1	$\begin{aligned} & 200 \\ & 210 \\ & 220 \\ & 230 \\ & 240 \end{aligned}$
$\begin{aligned} & 250 \\ & 250 \\ & 270 \\ & 280 \\ & 290 \\ & 290 \end{aligned}$	5.70451 5.78704 5.86854 5.95238 6.03500	$\begin{aligned} & 157.2 \\ & 159.6 \\ & 162.0 \\ & 164.4 \\ & 165.9 \end{aligned}$	$\begin{aligned} & 0.3280 \\ & 0.3314 \\ & 0.3347 \\ & 0.3380 \\ & 0.3413 \end{aligned}$	$\begin{aligned} & 0.2381 \\ & 0.2401 \\ & 0.2420 \\ & 0.2440 \\ & 0.2459 \end{aligned}$	$\begin{aligned} & 1.0925 \\ & 1.0955 \\ & 1.0905 \\ & 1.0896 \\ & 1.0887 \end{aligned}$	610.7 614.9 619.0 623.2 627.3		$\begin{aligned} & 5.29381 \\ & 5.37057 \\ & 5.44662 \\ & 5.52486 \\ & 5.59910 \end{aligned}$	$\begin{aligned} & 157.1 \\ & 159.5 \\ & 161.9 \\ & 164.4 \\ & 166.8 \end{aligned}$	$\begin{aligned} & 0.3266 \\ & 0.3299 \\ & 0.3332 \\ & 0.3365 \\ & 0.3398 \end{aligned}$	$\begin{aligned} & 0.2382 \\ & 0.2402 \\ & 0.2421 \\ & 0.2440 \\ & 0.2460 \end{aligned}$	$\begin{aligned} & 1.0927 \\ & 1.0917 \\ & 1.0908 \\ & 1.0898 \\ & 1.0889 \end{aligned}$	$\begin{aligned} & 610.4 \\ & 614.6 \\ & 618.8 \\ & 623.0 \\ & 627.1 \end{aligned}$	250 260 270 280 290
TEMP	PRESSURE $=14.696$ PSIA							PRESSURE $=15.00 \mathrm{PSIA}$						EMP
${ }^{\circ} \mathrm{F}$	V	H	S	Cp_{p}	Cp/Cv	v_{5}		V	H	s	Cp	Cp/Cv	v_{5}	${ }^{\circ} \mathbf{F}$
$\begin{aligned} & -14.9 \\ & -14.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01166 \\ & 3.04507 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.5 \\ 100.9 \\ \hline \end{array}$	$\begin{aligned} & 0.0174 \\ & 0.2274 \end{aligned}$	$\begin{aligned} & 0.3041 \\ & 0.1885 \end{aligned}$	$\begin{aligned} & 1.5046 \\ & 1.1540 \\ & \hline \end{aligned}$	$\begin{array}{r} 2443.9 \\ 478.0 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \text { SAT UI } \\ \text { SAT VAP } \end{array}$	$\begin{aligned} & 0.01167 \\ & 2.98686 \end{aligned}$	$\begin{array}{r} 7.8 \\ 101.1 \\ \hline \end{array}$	$\begin{aligned} & 0.0180 \\ & 0.2273 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3043 \\ & 0.1888 \end{aligned}$	$\begin{aligned} & 1.5047 \\ & 1.1543 \end{aligned}$	$\begin{array}{r} 2437.1 \\ 478.1 \\ \hline \end{array}$	$\begin{aligned} & -14.1 \\ & -14.1 \end{aligned}$
-10	3.08547	101.9	0.2295	0.1891	1.1513	481.0		3.01932	101.8	0.2290	0.1893	1.1520	480.7	-10
$\begin{array}{r} 0 \\ 10 \\ 20 \\ 30 \\ 40 \end{array}$	$\begin{aligned} & 3.16556 \\ & 3.24465 \\ & 3.32336 \\ & 3.40136 \\ & 3.47947 \end{aligned}$	$\begin{aligned} & 103.8 \\ & 105.7 \\ & 107.6 \\ & 109.5 \\ & 111.5 \end{aligned}$	0.2336 0.2378 0.2418 0.2458 0.2498	0.1904 0.1918 0.1934 0.1950 0.1967	$\begin{aligned} & 1.1461 \\ & 1.1415 \\ & 1.1374 \\ & 1.1336 \\ & 1.1302 \end{aligned}$	487.2 493.1 498.9 504.6 510.2		$\begin{aligned} & 3.09895 \\ & 3.17662 \\ & 3.25415 \\ & 3.33111 \\ & 3.40716 \end{aligned}$	$\begin{aligned} & 103.7 \\ & 105.6 \\ & 107.6 \\ & 109.5 \\ & 111.5 \end{aligned}$	$\begin{aligned} & 0.2332 \\ & 0.2373 \\ & 0.2414 \\ & 0.2454 \\ & 0.2494 \end{aligned}$	$\begin{aligned} & 0.1906 \\ & 0.1920 \\ & 0.1935 \\ & 0.1952 \\ & 0.1969 \end{aligned}$	$\begin{aligned} & 1.1467 \\ & 1.1420 \\ & 1.1378 \\ & 1.1340 \\ & 1.1306 \end{aligned}$	4869 492.8 498.7 504.4 510.0	0 10 20 30 40
$\begin{array}{r} 50 \\ -\quad 70 \\ -\quad 70 \\ 80 \\ 90 \end{array}$	$\begin{aligned} & 3.55619 \\ & 3.53240 \\ & 3.70920 \\ & 3.78501 \\ & 3.85951 \end{aligned}$	$\begin{aligned} & 113.5 \\ & 115.5 \\ & 117.5 \\ & 119.5 \\ & 121.6 \end{aligned}$	0.2537 0.2576 0.2614 0.2652 0.2690	0.1985 0.2004 0.2023 0.2042 0.2062	$\begin{aligned} & 1.1271 \\ & 1.1242 \\ & 1.1215 \\ & 1.1190 \\ & 1.1167 \end{aligned}$	515.7 521.0 526.3 531.5 536.6		$\begin{aligned} & 3.48189 \\ & 3.55745 \\ & 3.63240 \\ & 3.70645 \\ & 3.78072 \end{aligned}$	$\begin{aligned} & 113.5 \\ & 115.4 \\ & 117.5 \\ & 119.5 \\ & 121.5 \end{aligned}$	$\begin{aligned} & 0.2533 \\ & 0.2571 \\ & 0.2610 \\ & 0.2648 \\ & 0.2686 \end{aligned}$	$\begin{aligned} & 0.1987 \\ & 0.2005 \\ & 0.2024 \\ & 0.2043 \\ & 0.2063 \end{aligned}$	$\begin{aligned} & 1.1274 \\ & 1.1245 \\ & 1.1218 \\ & 1.1193 \\ & 1.1169 \end{aligned}$	515.5 520.8 526.1 531.3 536.4	50 80 70 80 90
$\begin{aligned} & 100 \\ & 110 \\ & 120 \\ & 130 \\ & 140 \end{aligned}$	$\begin{aligned} & 3.93546 \\ & 4.1123 \\ & 4.08497 \\ & 4.15973 \\ & 4.23370 \end{aligned}$	$\begin{aligned} & 123.6 \\ & 125.7 \\ & 127.8 \\ & 130.0 \\ & 132.1 \end{aligned}$	$\begin{aligned} & 0.2727 \\ & 0.2764 \\ & 0.2801 \\ & 0.2837 \\ & 0.2874 \end{aligned}$	0.2082 0.2102 0.2122 0.2142 0.2162	$\begin{aligned} & 1.1145 \\ & 1.1125 \\ & 1.1106 \\ & 1.1088 \\ & 1.1077 \end{aligned}$	541.6 546.5 551.4 556.2 561.0		$\begin{aligned} & 3.85356 \\ & 3.92773 \\ & 4.00160 \\ & 4.07332 \\ & 4.14594 \end{aligned}$	$\begin{aligned} & 123.6 \\ & 125.7 \\ & 127.8 \\ & 130.0 \\ & 132.1 \end{aligned}$	$\begin{aligned} & 0.2723 \\ & 0.2760 \\ & 0.2797 \\ & 0.2833 \\ & 0.2869 \end{aligned}$	$\begin{aligned} & 0.2082 \\ & 0.2102 \\ & 0.2122 \\ & 0.2142 \\ & 0.2163 \end{aligned}$	$\begin{aligned} & 1.1147 \\ & 1.1127 \\ & 1.1108 \\ & 1.1090 \\ & 1.1072 \end{aligned}$	541.4 546.4 551.3 556.1 560.9	$\begin{aligned} & 100 \\ & 110 \\ & 120 \\ & 130 \\ & 140 \end{aligned}$
$\begin{aligned} & 150 \\ & 160 \\ & 170 \\ & 180 \\ & 190 \end{aligned}$	$\begin{aligned} & 4.30849 \\ & 4.38212 \\ & 4.45633 \\ & 4.52899 \\ & 4.60193 \end{aligned}$	$\begin{aligned} & 134.3 \\ & 136.5 \\ & 138.7 \\ & 140.9 \\ & 143.2 \end{aligned}$	$\begin{aligned} & 0.2910 \\ & 0.2945 \\ & 0.2981 \\ & 0.3016 \\ & 0.3051 \end{aligned}$	$\begin{aligned} & 0.2182 \\ & 0.2203 \\ & 0.2223 \\ & 0.2243 \\ & 0.2263 \end{aligned}$	$\begin{aligned} & 1.1055 \\ & 1.1039 \\ & 1.1025 \\ & 1.1011 \\ & 1.0998 \end{aligned}$	$\begin{aligned} & 565.7 \\ & 570.4 \\ & 575.0 \\ & 579.5 \\ & 584.1 \end{aligned}$		$\begin{aligned} & 4.21941 \\ & 4.29185 \\ & 4.36300 \\ & 4.43656 \\ & 4.50857 \end{aligned}$	$\begin{aligned} & 134.3 \\ & 136.5 \\ & 138.7 \\ & 140.9 \\ & 143.2 \end{aligned}$	$\begin{aligned} & 0.2905 \\ & 0.2941 \\ & 0.2977 \\ & 0.3012 \\ & 0.3047 \end{aligned}$	$\begin{aligned} & 0.2183 \\ & 0.2203 \\ & 0.2223 \\ & 0.2244 \\ & 0.2264 \end{aligned}$	1.1056 1.1041 1.1026 1.1012 1.0999	$\begin{aligned} & 565.6 \\ & 570.3 \\ & 574.9 \\ & 579.4 \\ & 584.0 \end{aligned}$	$\begin{aligned} & 150 \\ & 160 \\ & 170 \\ & 180 \\ & 190 \end{aligned}$
$\begin{aligned} & 200 \\ & 210 \\ & 220 \\ & 230 \\ & 240 \end{aligned}$	$\begin{aligned} & 4.67727 \\ & 4.74834 \\ & 4.82393 \\ & 4.89476 \\ & 4.97018 \end{aligned}$	$\begin{aligned} & 145.5 \\ & 147.8 \\ & 150.1 \\ & 152.4 \\ & 154.8 \end{aligned}$	$\begin{aligned} & 0.3086 \\ & 0.3120 \\ & 0.3154 \\ & 0.3188 \\ & 0.3222 \end{aligned}$	$\begin{aligned} & 0.2284 \\ & 0.2304 \\ & 0.2324 \\ & 0.2343 \\ & 0.2366 \end{aligned}$	$\begin{aligned} & 1.0985 \\ & 1.0973 \\ & 1.0961 \\ & 1.0950 \\ & 1.0939 \end{aligned}$	$\begin{aligned} & 568.5 \\ & 592.9 \\ & 597.3 \\ & 601.7 \\ & 606.0 \end{aligned}$		$\begin{aligned} & 4.58085 \\ & 4.65333 \\ & 4.72367 \\ & 4.79616 \\ & 4.86618 \end{aligned}$	$\begin{aligned} & 145.5 \\ & 147.7 \\ & 150.1 \\ & 152.4 \\ & 154.7 \end{aligned}$	$\begin{aligned} & 0.3081 \\ & 0.3116 \\ & 0.3150 \\ & 0.3184 \\ & 0.3218 \end{aligned}$	$\begin{aligned} & 0.2284 \\ & 0.2304 \\ & 0.2324 \\ & 0.2344 \\ & 0.2363 \end{aligned}$	$\begin{aligned} & 1.0986 \\ & 1.0974 \\ & 1.0962 \\ & 1.0951 \\ & 1.0940 \end{aligned}$	588. 4 592.8 597.2 601.6 605.9	$\begin{aligned} & 200 \\ & 210 \\ & 220 \\ & 230 \\ & 240 \end{aligned}$
$\begin{aligned} & 250 \\ & 250 \\ & 270 \\ & 280 \\ & 290 \end{aligned}$	$\begin{aligned} & 5.04286 \\ & 5.11509 \\ & 5.18672 \\ & 5.26039 \\ & 5.33333 \end{aligned}$	$\begin{aligned} & 157.1 \\ & 159.5 \\ & 161.9 \\ & 164.4 \\ & 166.8 \end{aligned}$	$\begin{aligned} & 0.3256 \\ & 0.3289 \\ & 0.3323 \\ & 0.3356 \\ & 0.3389 \end{aligned}$	$\begin{aligned} & 0.2383 \\ & 0.2402 \\ & 0.2422 \\ & 0.2441 \\ & 0.2460 \end{aligned}$	$\begin{aligned} & 1.0929 \\ & 1.0919 \\ & 1.0909 \\ & 1.0500 \\ & 1.0891 \end{aligned}$	610.2 614.5 818.7 622.8 627.0		$\begin{aligned} & 4.93827 \\ & 5.01002 \\ & 5.08130 \\ & 5.15198 \\ & 5.22466 \end{aligned}$	$\begin{aligned} & 157.1 \\ & 159.5 \\ & 161.9 \\ & 164.4 \\ & 166.8 \end{aligned}$	$\begin{aligned} & 0.3252 \\ & 0.3285 \\ & 0.3319 \\ & 0.3532 \\ & 0.3385 \end{aligned}$	$\begin{aligned} & 0.2383 \\ & 0.2403 \\ & 0.2422 \\ & 0.2441 \\ & 0.2460 \end{aligned}$	$\begin{aligned} & 1.0929 \\ & 1.0919 \\ & 1.0910 \\ & 1.0900 \\ & 1.0891 \end{aligned}$	610.2 614.4 618.6 622.8 626.9	$\begin{aligned} & 250 \\ & 250 \\ & 270 \\ & 270 \\ & 290 \\ & 290 \end{aligned}$

TABLE 2 (continued)
HFC-134a Superheated Vapor-Constant Pressure Tables
Volume in $\mathrm{ft}^{3} / \mathrm{lb} \quad \mathrm{H}=$ Enthalpy in Btu/lb $\quad \mathrm{S}=$ Entropy in Btu/(lb) ($\left.{ }^{\circ} \mathrm{R}\right) \quad \mathrm{V}_{\mathrm{s}}=$ Velocity of Sound in $\mathrm{ft} / \mathrm{sec}$
$=$ Heat Capacity at Constant Pressure in $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \quad \mathrm{Cp} / \mathrm{Cv}=$ Heat Capacity Ratio (Dimensionless)

$\underset{{ }^{\circ} \mathrm{FE}}{\text { TEMP }}$	PRESSURE $=100.00$ PSIA							PRESSURE $=110.00$ PSIA						$\begin{gathered} \text { TEMP } \\ { }^{\circ} \mathrm{F} \end{gathered}$
	V	H	S	Cp	$\mathrm{Cp} / \mathrm{Cv}$	v \%		V	H	S	Cp	$\mathrm{Cp} / \mathrm{Cv}$	v_{4}	
$\begin{aligned} & 79.1 \\ & 79.1 \end{aligned}$	$\begin{aligned} & 0.01333 \\ & 0.47803 \end{aligned}$	$\begin{array}{r} 37.8 \\ 113.9 \end{array}$	$\begin{aligned} & 0.0787 \\ & 0.2199 \end{aligned}$	$\begin{aligned} & 0.3433 \\ & 0.2446 \end{aligned}$	$\begin{aligned} & 1.5646 \\ & 1.2317 \end{aligned}$	$\begin{array}{r} 1654.2 \\ 472 . B \end{array}$	$\begin{array}{\|l\|} \hline \text { SAT LIO } \\ \text { SAT VAP } \end{array}$	$\begin{aligned} & 0.01347 \\ & 0.43391 \\ & \hline \end{aligned}$	$\begin{array}{r} 39.8 \\ 114.6 \end{array}$	$\begin{aligned} & 0.0824 \\ & 0.2196 \end{aligned}$	$\begin{aligned} & 0.3469 \\ & 0.2496 \end{aligned}$	$\begin{aligned} & 1.5726 \\ & 1.2420 \\ & \hline \end{aligned}$	$\begin{array}{r} 1604.1 \\ 470.4 \end{array}$	$\begin{aligned} & 85 \\ & 85 \\ & \hline \end{aligned}$
$\begin{array}{r}80 \\ \hline 90\end{array}$	$\begin{aligned} & 0.47952 \\ & 0.49552 \end{aligned}$	$\begin{aligned} & 114.1 \\ & 116.6 \end{aligned}$	$\begin{aligned} & 0.2203 \\ & 0.2248 \end{aligned}$	$\begin{aligned} & 0.2442 \\ & 0.2413 \end{aligned}$	$\begin{aligned} & 1.2300 \\ & 1.2129 \end{aligned}$	$\begin{aligned} & 473.6 \\ & 482.9 \end{aligned}$		0.44156	115.9	0.2218	0.2477	1.2319	475.4	$\begin{aligned} & 80 \\ & 90 \end{aligned}$
$\begin{array}{r} L 00 \\ 110 \\ 120 \\ 130 \\ 140 \end{array}$	$\begin{aligned} & 0.51093 \\ & 0.52587 \\ & 0.54037 \\ & 0.55451 \\ & 0.56838 \end{aligned}$	$\begin{aligned} & 119.0 \\ & 121.4 \\ & 123.7 \\ & 126.1 \\ & 128.5 \end{aligned}$	$\begin{aligned} & 0.2291 \\ & 0.2333 \\ & 0.2375 \\ & 0.2415 \\ & 0.2455 \end{aligned}$	$\begin{aligned} & 0.2393 \\ & 0.2379 \\ & 0.2370 \\ & 0.2366 \\ & 0.2365 \end{aligned}$	$\begin{aligned} & 1.1989 \\ & 1.1871 \\ & 1.1770 \\ & 1.1683 \\ & 1.1608 \end{aligned}$	491.7 499.9 507.8 515.3 522.5		0.45627 0.47043 0.48414 0.49746 0.51044	$\begin{aligned} & 118.3 \\ & 120.8 \\ & 123.2 \\ & 125.6 \\ & 128.0 \end{aligned}$	$\begin{aligned} & 0.2264 \\ & 0.2307 \\ & 0.2349 \\ & 0.2350 \\ & 0.2430 \end{aligned}$	$\begin{aligned} & 0.2446 \\ & 0.2425 \\ & 0.2410 \\ & 0.2401 \\ & 0.2395 \end{aligned}$	$\begin{aligned} & 1.2146 \\ & 1.2004 \\ & 1.1884 \\ & 1.1782 \\ & 1.1694 \end{aligned}$	484.8 493.6 502.0 509.9 517.5	$\begin{aligned} & 100 \\ & 110 \\ & 120 \\ & 130 \\ & 140 \end{aligned}$
$\begin{array}{r} 150 \\ 160 \\ 170 \\ {\left[\begin{array}{l} 180 \\ 190 \end{array}\right.} \end{array}$	$\begin{aligned} & 0.58194 \\ & 0.59527 \\ & 0.60835 \\ & 0.62135 \\ & 0.63416 \end{aligned}$	$\begin{aligned} & 130.8 \\ & 1332 \\ & 1356 \\ & 137.9 \\ & 140.3 \end{aligned}$	$\begin{aligned} & 0.2494 \\ & 0.2533 \\ & 0.2570 \\ & 0.2609 \\ & 0.2645 \end{aligned}$	$\begin{aligned} & 0.2366 \\ & 0.2370 \\ & 0.2376 \\ & 0.2384 \\ & 0.2393 \end{aligned}$	$\begin{aligned} & 1.1541 \\ & 1.1482 \\ & 1.1430 \\ & 1.1383 \\ & 1.1340 \end{aligned}$	$\begin{aligned} & 529.4 \\ & 536.1 \\ & 542.5 \\ & 548.8 \\ & 554.9 \end{aligned}$		$\begin{aligned} & 0.52309 \\ & 0.53562 \\ & 0.54786 \\ & 0.55979 \\ & 0.57166 \end{aligned}$	$\begin{aligned} & 130.4 \\ & 1328 \\ & 1352 \\ & 137.6 \\ & 140.0 \end{aligned}$	$\begin{aligned} & 0.2470 \\ & 0.2509 \\ & 0.2547 \\ & 0.2585 \\ & 0.2622 \end{aligned}$	$\begin{aligned} & 0.2394 \\ & 0.2395 \\ & 0.2399 \\ & 0.2404 \\ & 0.2411 \end{aligned}$	$\begin{aligned} & 1.1618 \\ & 1.1550 \\ & 1.1491 \\ & 1.1438 \\ & 1.1390 \end{aligned}$	524.7 531.7 538.5 545.0 551.3	$\begin{aligned} & 150 \\ & 160 \\ & 170 \\ & 180 \\ & 190 \end{aligned}$
$\begin{aligned} & 200 \\ & 210 \\ & 220 \\ & 230 \\ & 240 \end{aligned}$	$\begin{aligned} & 0.64675 \\ & 0.65924 \\ & 0.67155 \\ & 0.68385 \\ & 0.69604 \end{aligned}$	$\begin{aligned} & 142.7 \\ & 145.1 \\ & 147.6 \\ & 150.0 \\ & 152.4 \end{aligned}$	$\begin{aligned} & 0.2682 \\ & 0.2718 \\ & 0.2754 \\ & 0.2789 \\ & 0.2825 \end{aligned}$	$\begin{aligned} & 0.2403 \\ & 0.2414 \\ & 0.2426 \\ & 0.2439 \\ & 0.2452 \end{aligned}$	$\begin{aligned} & 1.1301 \\ & 1.1266 \\ & 1.1234 \\ & 1.1204 \\ & 1.1177 \end{aligned}$	560.9 566.7 572.3 577.9 583.3		$\begin{aligned} & 0.58340 \\ & 0.59503 \\ & 0.60543 \\ & 0.61774 \\ & 0.62893 \end{aligned}$	$\begin{aligned} & 142.4 \\ & 144.8 \\ & 1473 \\ & 149.7 \\ & 152.2 \end{aligned}$	0.2659 0.2696 0.2732 0.2788 0.2883	$\begin{aligned} & 0.2420 \\ & 0.2429 \\ & 0.2440 \\ & 0.2452 \\ & 0.2464 \end{aligned}$	$\begin{aligned} & 1.1347 \\ & 1.1300 \\ & 1.1272 \\ & 1.1239 \\ & 1.1209 \end{aligned}$	557.4 563.4 569.3 575.0 580.5	$\begin{aligned} & 200 \\ & 210 \\ & 220 \\ & 230 \\ & 240 \end{aligned}$
$\begin{aligned} & 250 \\ & 260 \\ & 270 \\ & 270 \\ & 280 \\ & 290 \end{aligned}$	$\begin{aligned} & 0.70806 \\ & 0.72015 \\ & 0.73196 \\ & 0.74388 \\ & 0.75569 \end{aligned}$	$\begin{aligned} & 154.9 \\ & 157.4 \\ & 159.9 \\ & 162.4 \\ & 164.9 \end{aligned}$	$\begin{aligned} & 0.2859 \\ & 0.2894 \\ & 0.2928 \\ & 0.2962 \\ & 0.2996 \end{aligned}$	$\begin{aligned} & 0.2466 \\ & 0.2480 \\ & 0.2495 \\ & 0.2509 \\ & 0.2524 \end{aligned}$	$\begin{aligned} & 1.1151 \\ & 1.1128 \\ & 1.1106 \\ & 1.1065 \\ & 1.1066 \end{aligned}$	$\begin{aligned} & 589.6 \\ & 593.9 \\ & 599.0 \\ & 604.1 \\ & 609.0 \end{aligned}$		$\begin{aligned} & 0.64012 \\ & 0.65121 \\ & 0.66212 \\ & 0.67308 \\ & 0.68385 \end{aligned}$	$\begin{aligned} & 154.6 \\ & 157.1 \\ & 159.6 \\ & 162.1 \\ & 164.6 \end{aligned}$	$\begin{aligned} & 0.2838 \\ & 0.2873 \\ & 0.2907 \\ & 0.2941 \\ & 0.2975 \end{aligned}$	$\begin{aligned} & 0.2477 \\ & 0.2490 \\ & 0.2504 \\ & 0.2518 \\ & 0.2533 \end{aligned}$	$\begin{aligned} & 1.1181 \\ & 1.1156 \\ & 1.1132 \\ & 1.1109 \\ & 1.1088 \end{aligned}$	586.0 591.4 556.6 601.8 606.9	$\begin{aligned} & 250 \\ & 250 \\ & 270 \\ & 280 \\ & 290 \end{aligned}$
$\begin{aligned} & 300 \\ & 310 \\ & 320 \\ & 330 \\ & 340 \end{aligned}$	0.76740 0.77906 0.79064 0.80225 0.81387	$\begin{aligned} & 167.4 \\ & 170.0 \\ & 172.5 \\ & 175.1 \\ & 177.7 \end{aligned}$	$\begin{aligned} & 0.3030 \\ & 0.3063 \\ & 0.3096 \\ & 0.3129 \\ & 0.3162 \end{aligned}$	$\begin{aligned} & 0.2540 \\ & 0.2555 \\ & 0.2571 \\ & 0.2586 \\ & 0.2602 \end{aligned}$	$\begin{aligned} & 1.1047 \\ & 1.1030 \\ & 1.1014 \\ & 1.099 \\ & 1.0984 \end{aligned}$	613.9 618.7 623.5 628.2 632.8		$\begin{aligned} & 0.69464 \\ & 0.70542 \\ & 0.71613 \\ & 0.72680 \\ & 0.73725 \end{aligned}$	$\begin{aligned} & 167.2 \\ & 169.7 \\ & 172.3 \\ & 174.9 \\ & 177.5 \end{aligned}$	$\begin{aligned} & 0.3009 \\ & 0.3042 \\ & 0.3076 \\ & 0.3109 \\ & 0.3141 \end{aligned}$	$\begin{aligned} & 0.2547 \\ & 0.2562 \\ & 0.2577 \\ & 0.2593 \\ & 0.2608 \end{aligned}$	$\begin{aligned} & 1.1069 \\ & 1.1050 \\ & 1.1033 \\ & 1.1017 \\ & 1.1001 \end{aligned}$	611.9 616.8 621.6 626.4 631.1	$\begin{aligned} & 300 \\ & 310 \\ & 320 \\ & 330 \\ & 340 \end{aligned}$
$\begin{aligned} & 350 \\ & 360 \\ & 370 \\ & 380 \\ & 390 \end{aligned}$	$\begin{array}{r} 0.82535 \\ 0.83675 \\ 0.84818 \\ 0.85955 \\ - \end{array}$	$\begin{aligned} & 180.3 \\ & 1829 \\ & 1856 \\ & 1882 \end{aligned}$	$\begin{aligned} & 0.3194 \\ & 0.3226 \\ & 0.3258 \\ & 0.3250 \end{aligned}$	$\begin{array}{r} 0.2618 \\ 0.2634 \\ 0.2649 \\ 0.2665 \\ \hline \end{array}$	$\begin{aligned} & 1.0970 \\ & 1.0957 \\ & 1.0945 \\ & 1.0933 \end{aligned}$	$\begin{aligned} & 637.4 \\ & 641.9 \\ & 646.4 \\ & 650.8 \end{aligned}$		$\begin{aligned} & 0.74783 \\ & 0.75832 \\ & 0.76870 \\ & 0.77924 \\ & 0.78958 \end{aligned}$	$\begin{aligned} & 180.1 \\ & 182.7 \\ & 185.4 \\ & 188.0 \\ & 190.7 \end{aligned}$	$\begin{aligned} & 0.3174 \\ & 0.3206 \\ & 0.3239 \\ & 0.3270 \\ & 0.3302 \end{aligned}$	$\begin{aligned} & 0.2624 \\ & 0.2639 \\ & 0.2655 \\ & 0.2670 \\ & 0.2686 \end{aligned}$	$\begin{aligned} & 1.0987 \\ & 1.0973 \\ & 1.0959 \\ & 1.0947 \\ & 1.0935 \end{aligned}$	$\begin{aligned} & 635.8 \\ & 640.4 \\ & 644.9 \\ & 649.4 \\ & 653.8 \end{aligned}$	$\begin{aligned} & 350 \\ & 360 \\ & 370 \\ & 380 \\ & 350 \end{aligned}$

$\underset{{ }^{\circ} \mathrm{TEMP}}{ }$	PRESSURE $=120.00 \mathrm{PSIA}$							PRESSURE $=130.00$ PSIA						$\underset{{ }^{\circ} \mathrm{TE} \mathrm{~F}}{ }$
	V	H	S	Cp	$\mathrm{Cp} / \mathrm{Cr}$	v_{5}		V	H	\$	Cp	$\mathrm{Cp} / \mathrm{Cv}$	v_{s}	
$\begin{aligned} & 90.5 \\ & 90.5 \end{aligned}$	$\begin{aligned} & 0.01361 \\ & 0.35669 \end{aligned}$	$\begin{array}{r} 41.8 \\ 115.3 \end{array}$	$\begin{aligned} & 0.0858 \\ & 0.2194 \end{aligned}$	$\begin{aligned} & 0.3504 \\ & 0.2546 \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{BOB} \\ & 1.2528 \end{aligned}$	$\begin{array}{r} 1557.1 \\ 467.9 \end{array}$	sAT ULA SAT VAP	$\begin{aligned} & 0.01374 \\ & 0.36538 \end{aligned}$	$\begin{array}{r} 43.6 \\ 115.8 \end{array}$	$\begin{aligned} & 0.0890 \\ & 0.2192 \end{aligned}$	$\begin{aligned} & 0.3540 \\ & 0.2596 \end{aligned}$	$\begin{aligned} & 1.5893 \\ & 1.2640 \\ & \hline \end{aligned}$	$\begin{array}{r} 1512.8 \\ 465.4 \end{array}$	$\begin{aligned} & 95.6 \\ & 95.6 \\ & \hline \end{aligned}$
$\begin{aligned} & 100 \\ & 110 \\ & 120 \\ & 130 \\ & 140 \end{aligned}$	0.41044 0.42402 0.43710 0.44976 0.46206	$\begin{aligned} & 117.7 \\ & 120.2 \\ & 122.6 \\ & 125.1 \\ & 127.5 \end{aligned}$	$\begin{aligned} & 0.2238 \\ & 0.2282 \\ & 0.2324 \\ & 0.2365 \\ & 0.2407 \end{aligned}$	$\begin{aligned} & 0.2506 \\ & 0.2475 \\ & 0.2453 \\ & 0.2438 \\ & 0.2428 \end{aligned}$	$\begin{aligned} & 1.2326 \\ & 1.2153 \\ & 1.2010 \\ & 1.1890 \\ & 1.1789 \end{aligned}$	$\begin{aligned} & 477.6 \\ & 487.1 \\ & 496.0 \\ & 504.4 \\ & 512.4 \end{aligned}$		$\begin{aligned} & 0.37136 \\ & 0.38453 \\ & 0.39712 \\ & 0.40925 \\ & 0.42100 \end{aligned}$	$\begin{aligned} & 117.0 \\ & 119.5 \\ & 122.0 \\ & 124.5 \\ & 127.0 \end{aligned}$	$\begin{aligned} & 0.2212 \\ & 0.2257 \\ & 0.2301 \\ & 0.2344 \\ & 0.2385 \end{aligned}$	$\begin{aligned} & 0.2573 \\ & 0.2531 \\ & 0.2501 \\ & 0.2479 \\ & 0.2464 \end{aligned}$	$\begin{aligned} & 1.2531 \\ & 1.2321 \\ & 1.2150 \\ & 1.2009 \\ & 1.1890 \end{aligned}$	$\begin{aligned} & 470.1 \\ & 480.3 \\ & 489.8 \\ & 498.7 \\ & 507.1 \end{aligned}$	100 110 120 130 140
$\begin{aligned} & 150 \\ & 160 \\ & 170 \\ & 180 \\ & 150 \end{aligned}$	$\begin{aligned} & 0.47405 \\ & 0.48577 \\ & 0.49724 \\ & 0.50860 \\ & 0.51967 \end{aligned}$	$\begin{aligned} & 129.9 \\ & 132.3 \\ & 134.8 \\ & 137.2 \\ & 139.6 \end{aligned}$	$\begin{aligned} & 0.2447 \\ & 0.2487 \\ & 0.2525 \\ & 0.2564 \\ & 0.2601 \end{aligned}$	$\begin{aligned} & 0.2423 \\ & 0.2421 \\ & 0.2422 \\ & 0.2425 \\ & 0.2430 \end{aligned}$	$\begin{aligned} & 1.1700 \\ & 1.1623 \\ & 1.1555 \\ & 1.1495 \\ & 1.1442 \end{aligned}$	5200 5273 534.3 541.1 547.6		$\begin{aligned} & 0.43241 \\ & 0.44350 \\ & 0.45442 \\ & 0.46507 \\ & 0.47556 \end{aligned}$	$\begin{aligned} & 129.5 \\ & 131.9 \\ & 134.4 \\ & 136.8 \\ & 139.2 \end{aligned}$	$\begin{aligned} & 0.2426 \\ & 0.2466 \\ & 0.2505 \\ & 0.2544 \\ & 0.2582 \end{aligned}$	$\begin{aligned} & 0.2454 \\ & 0.2449 \\ & 0.2446 \\ & 0.2447 \\ & 0.2450 \end{aligned}$	$\begin{aligned} & 1.1788 \\ & 1.1701 \\ & 1.1624 \\ & 1.1557 \\ & 1.1497 \end{aligned}$	$\begin{aligned} & 515.1 \\ & 522.7 \\ & 5300 \\ & 537.1 \\ & 543.9 \end{aligned}$	150 160 170 180 190
$\begin{aligned} & 200 \\ & 210 \\ & 220 \\ & 230 \\ & 240 \end{aligned}$	$\begin{aligned} & 0.53054 \\ & 0.54139 \\ & 0.55206 \\ & 0.56268 \\ & 0.57307 \end{aligned}$	$\begin{aligned} & 142.0 \\ & 144.5 \\ & 146.9 \\ & 149.4 \\ & 151.9 \end{aligned}$	$\begin{aligned} & 0.2639 \\ & 0.2675 \\ & 0.2712 \\ & 0.2747 \\ & 0.2783 \end{aligned}$	$\begin{aligned} & 0.2437 \\ & 0.2445 \\ & 0.2454 \\ & 0.2465 \\ & 0.2476 \end{aligned}$	$\begin{aligned} & 1.1394 \\ & 1.1351 \\ & 1.1311 \\ & 1.1275 \\ & 1.1243 \end{aligned}$	554.0 560.1 566.2 572.0 577.8		$\begin{aligned} & 0.48584 \\ & 0.49601 \\ & 0.50602 \\ & 0.51597 \\ & 0.52576 \end{aligned}$	$\begin{aligned} & 141.7 \\ & 144.2 \\ & 146.6 \\ & 149.1 \\ & 151.6 \end{aligned}$	$\begin{aligned} & 0.2619 \\ & 0.2656 \\ & 0.2692 \\ & 0.2729 \\ & 0.2764 \end{aligned}$	$\begin{aligned} & 0.2455 \\ & 0.2461 \\ & 0.2469 \\ & 0.2478 \\ & 0.2489 \end{aligned}$	$\begin{aligned} & 1.1444 \\ & 1.1396 \\ & 1.1352 \\ & 1.1313 \\ & 1.1277 \end{aligned}$	$\begin{aligned} & 550.5 \\ & 556.8 \\ & 563.0 \\ & 569.1 \\ & 575.0 \end{aligned}$	200 210 220 220 240
$\begin{aligned} & 250 \\ & 250 \\ & 270 \\ & 280 \\ & 290 \end{aligned}$	$\begin{aligned} & 0.58350 \\ & 0.59379 \\ & 0.60394 \\ & 0.61406 \\ & 0.62414 \end{aligned}$	154.4 156.8 159.4 161.9 164.4	$\begin{aligned} & 0.2818 \\ & 0.2853 \\ & 0.2898 \\ & 0.2922 \\ & 0.2956 \end{aligned}$	$\begin{aligned} & 0.2488 \\ & 0.2501 \\ & 0.2514 \\ & 0.2527 \\ & 0.2541 \end{aligned}$	$\begin{aligned} & 1.1212 \\ & 1.1184 \\ & 1.1158 \\ & 1.1134 \\ & 1.1112 \end{aligned}$	$\begin{aligned} & 583.4 \\ & 588.9 \\ & 594.2 \\ & 599.5 \\ & 604.7 \end{aligned}$		$\begin{aligned} & 0.53550 \\ & 0.54511 \\ & 0.55460 \\ & 0.56409 \\ & 0.57353 \end{aligned}$	154.1 155.6 159.1 161.6 164.2	$\begin{aligned} & 0.2890 \\ & 0.2835 \\ & 0.2870 \\ & 0.2904 \\ & 0.2938 \end{aligned}$	$\begin{aligned} & 0.2500 \\ & 0.2511 \\ & 0.2524 \\ & 0.2536 \\ & 0.2550 \end{aligned}$	$\begin{aligned} & 1.1244 \\ & 1.1214 \\ & 1.1186 \\ & 1.1160 \\ & 1.1136 \end{aligned}$	580.7 586.3 591.8 597.2 602.5	250 260 270 280 290
$\begin{aligned} & 300 \\ & 310 \\ & 320 \\ & 330 \\ & 340 \end{aligned}$	$\begin{aligned} & 0.63408 \\ & 0.64404 \\ & 0.65389 \\ & 0.66375 \\ & 0.67354 \end{aligned}$	$\begin{aligned} & 167.0 \\ & 169.5 \\ & 172.1 \\ & 174.7 \\ & 177.3 \end{aligned}$	$\begin{aligned} & 0.2990 \\ & 0.3023 \\ & 0.3057 \\ & 0.3090 \\ & 0.3122 \end{aligned}$	$\begin{aligned} & 0.2555 \\ & 0.2570 \\ & 0.2584 \\ & 0.2599 \\ & 0.2614 \end{aligned}$	$\begin{aligned} & 1.1091 \\ & 1.1071 \\ & 1.1052 \\ & 1.1035 \\ & 1.1019 \end{aligned}$	$\begin{aligned} & 609.8 \\ & 614.8 \\ & 619.8 \\ & 624.6 \\ & 629.4 \end{aligned}$		$\begin{aligned} & 0.58282 \\ & 0.59207 \\ & 0.60129 \\ & 0.61039 \\ & 0.61962 \end{aligned}$	$\begin{aligned} & 166.7 \\ & 169.3 \\ & 171.9 \\ & 174.5 \\ & 177.1 \end{aligned}$	$\begin{aligned} & 0.2972 \\ & 0.3006 \\ & 0.3039 \\ & 0.3072 \\ & 0.3105 \end{aligned}$	$\begin{aligned} & 0.2563 \\ & 0.2577 \\ & 0.2592 \\ & 0.2606 \\ & 0.2621 \end{aligned}$	$\begin{aligned} & 1.1113 \\ & 1.1092 \\ & 1.1072 \\ & 1.1054 \\ & 1.1036 \end{aligned}$	$\begin{aligned} & 607.7 \\ & 612.8 \\ & 617.9 \\ & 622.8 \\ & 627.7 \end{aligned}$	300 310 320 330 340
$\begin{aligned} & 350 \\ & 360 \\ & 370 \\ & 380 \\ & 390 \end{aligned}$	$\begin{aligned} & 0.68329 \\ & 0.69300 \\ & 0.70264 \\ & 0.71225 \\ & 0.72192 \end{aligned}$	$\begin{aligned} & 179.9 \\ & 182.6 \\ & 185.2 \\ & 187.9 \\ & 190.6 \end{aligned}$	$\begin{aligned} & 0.3155 \\ & 0.3187 \\ & 0.3220 \\ & 0.3252 \\ & 0.3283 \end{aligned}$	$\begin{aligned} & 0.2629 \\ & 0.2645 \\ & 0.2660 \\ & 0.2675 \\ & 0.2690 \end{aligned}$	$\begin{aligned} & 1.1003 \\ & 1.0988 \\ & 1.0974 \\ & 1.0961 \\ & 1.0948 \end{aligned}$	634.1 638.8 643.4 648.0 652.5		$\begin{aligned} & 0.62865 \\ & 0.63771 \\ & 0.64666 \\ & 0.65569 \\ & 0.66458 \end{aligned}$	$\begin{aligned} & 179.7 \\ & 182.4 \\ & 185.0 \\ & 187.7 \\ & 100.4 \end{aligned}$	$\begin{aligned} & 0.3138 \\ & 0.3170 \\ & 0.3202 \\ & 0.3234 \\ & 0.3266 \end{aligned}$	$\begin{aligned} & 0.2635 \\ & 0.2650 \\ & 0.2665 \\ & 0.2680 \\ & 0.2895 \end{aligned}$	$\begin{aligned} & 1.1020 \\ & 1.1004 \\ & 1.0999 \\ & 1.0975 \\ & 1.0962 \end{aligned}$	632.5 6372 641.9 646.5 651.1	350 360 370 380 390
400	0.73142	193.3	0.3315	0.2706	1.0936	656.9		0.67345	193.1	0.3298	0.2710	1.0949	655.6	400

