10.213 Fall 1999

Problem 6 (due Wednesday, September 22)

a) What is the heat required to raise the temperature of 12 moles of propane from $250^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ at a constant pressure of 1 atm ?
b) What is the final temperature when 800 kJ of heat is added to 10 mol of ethylene initially at $200^{\circ} \mathrm{C}$ while the pressure remains constant?
c) If the heat capacity for a compound follows $C_{P}=A+B T+C T^{2}$, show that the difference between $\left\langle\mathrm{C}_{\mathrm{P}}\right\rangle_{\mathrm{H}}$ over the range from T_{1} to T_{2}, differs from the value of C_{P} evaluated at the arithmetic mean temperature, $\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) / 2$, is $\mathrm{C}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)^{2} / 12$.
d) Evaluate the difference derived in part c for the specific conditions given in part a. What \% error would this introduce into the calculation performed in part a?

