USE TWO BLUE BOOKS, ONE FOR EACH QUESTION. WRITE YOUR NAME ON EACH BLUE BOOK. SHOW YOUR SOLUTION METHOD CLEARLY.

Problem 1 of 2 (45 pts total)

One mole of tetrafluoromethane (CF₄) is compressed in piston. The path followed during the compression is reversible and is given by:

$$PV^{1.5} = constant.$$

The initial and final properties of the gas are summarized in the table below. For CF₄ over the temperature range of interest, the ideal gas state heat capacity follows the relationship

$$C_p^{ig}/R = A + BT$$
, with A= 4.5, B=0.005, and where T is in Kelvin.

Property(units)	initial	final
T(K)	300	600
P(bar)	1	8
V(cm ³ /mol)	24,900	6225
Z	1	1
$PV^{1.5}$ (bar cm ^{4.5} / mol ^{1.5})	3.93x10 ⁶	3.93x10 ⁶

For the process described above determine:

- a) (15 pts) the change in enthalpy of the gas.
- b) (15 pts) the reversible work required.
- c) (15 pts) the reversible heat transferred.

TURN PAGE OVER

Problem 2 of 2 (55 pts total)

A tank a having a volume of 20 liters is filled to a pressure of 20 bar with pure N_2 Saturated liquid occupies 50% of the tank's volume. Saturated vapor occupies the other 50% of the space. At this high pressure, the vapor phase SHOULD NOT be considered an ideal gas. Use the thermodynamic data at the bottom of the page to address the following:

- a) (10 pts) What is the temperature, in Kelvin, of the nitrogen in the tank?
- b) (15 pts) What is the intensive volume, in units of cm³/mol, of the gas in the tank?
- c) (15 pts) What is the intensive volume, in units of cm³/mol, of the liquid in the tank?
- d) (5 pts) Calculate the number of moles present in the vapor phase, n_v , and the number of moles present in the liquid phase, n_l , and the average intensive volume for the nitrogen in the tank, $[V^t / (n_v + n_l)]$.
- e) (10 pts) Qualitatively sketch a PV diagram for nitrogen showing the
 - i) saturated liquid-vapor dome
 - ii) critical point
 - iiii) points representing the liquid and vapor phases in the tank and the isotherm passing through these points
 - iv) point representing the overall state of the N_2 in the tank Where ever possible, add numerical values to the P axis and V axis.

Thermodynamic Data for N₂:

Critical temperature 126.2 KNormal boiling point: 77.2 K

Critical pressure: 34 bar V_g^{sat} (77.2 K): 6136 cm³/mol

Critical volume: $89.2 \text{ cm}^3/\text{mol } V_l^{\text{sat}} (77.2 \text{ K})$: $34.7 \text{ cm}^3/\text{mol}$

Z_c 0.289 Acentric factor: 0.038

Antoine Equation (from NIST web site)log₁₀(P^{sat})=A-[B/(T+C)]

where P^{sat} has units of bar and T is given in Kelvin.

A= 3.74 B= 265 C= -6.79