10.301- Review Problems for Exam III Kevin D. Dorfman

Problem 1. Flow between two radial disks (from W.M. Deen)

Consider the flow between two radial disks of radius R separated by a distance $2 H$ with a concentric hole. Fluid flows through the hole on both sides at a volumetric flow rate Q, moving out towards the edges of the disk. Assume that the flow is steady and the fluid is Newtonian.

(a) Relate the flow rate Q to the average fluid velocity $U(r)$.
(b) Assume a velocity of the form $\mathbf{v}=v_{r}(r, z) \mathbf{i}_{\mathbf{r}}=\mathrm{f}(\mathrm{z}) / \mathrm{r} \mathbf{i}_{\mathbf{r}}$ and a dynamic pressure field $P=P(r)$. Show that this satisfies continuity and the Navier-Stokes equation and compute the velocity field.
(c) Eliminate the pressure from the expression in part (b), thereby expressing v_{r} in known quantities. What is the function $f(z)$?

Problem 2. Fluid Jet Impacting an Inclined Plate (K. Smith)

Consider a fluid jet of velocity \mathbf{v} impacting upon a plate inclined at an angle β with respect to the incoming jet. A force \mathbf{F} is applied normal to the plate to hold it in place. Assuming that viscous effects, gravity, and pressure are negligible compared to inertia, compute the widths (b_{1}, b_{2}, and b_{3}) and velocities (\mathbf{v}_{2} and $\mathbf{v}_{\mathbf{3}}$) of each jet. You may assume to process is uniform in the z-direction, so that the problem is essentially twodimensional. Also, assume that the velocities are uniform across their cross-sections.

Prollem 1
a) Relate $U(1)$ to Q.

$$
2 Q=[2 \pi r(2 H)] U(r)
$$

$$
\text { totric } \uparrow \text { inear velecity }
$$

flow rade cross-sectiond

$$
U(r)=\frac{Q}{2 \pi H r}
$$

b) $\quad \underline{V}=V_{r}(r, z) i_{r}=f(z) / r 1_{r} ; \quad P=P(1)$
i) coninusty: $\frac{\partial}{\partial r}\left(r v_{r}\right)=0 \Rightarrow V_{r}=\frac{f(z)}{r}$
ii) θ-momutum: $\frac{\partial P}{\partial \theta}=0 \Rightarrow P=P(r, z)$
(iii) z-momentum: $\frac{\partial P}{\partial z}=0 \Rightarrow P=P(r)$
(iv) r-mowentum:

$$
0=-\frac{\partial P}{\partial r}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r} \underset{\sim}{r}\left(r v_{r}\right)\right)+\frac{\partial^{2} v_{r}}{\partial z^{2}}\right]
$$

$$
\frac{\partial^{2} v_{r}}{\partial z^{2}}=\frac{1}{\mu} \frac{d P}{d r}
$$

${ }^{n}$ not a function of z.

Integrate $\quad \frac{\partial v_{r}}{\partial z}=\frac{z}{\mu} \frac{d P}{d r}+c_{1}(r)$
Fitegrate: $\quad v_{r}=\frac{z^{2}}{2 \mu} \frac{d P}{d r}+c_{2}(1)$
No slip at moth.

$$
0=\frac{H^{2}}{2 \mu} \frac{d P}{d r}+C_{2}(r) \Rightarrow C_{2}(r)=\frac{-H^{2}}{2 \mu} \frac{d P}{d r}
$$

Consequently,
Cue still do not know then!
c) Find the function $f(x)$ by relating to $u(1)$

$$
\begin{aligned}
& U(r)=\frac{1}{2 H} \int_{-H}^{H} v_{r} d z=\frac{1}{2 H}\left[\frac{H^{2}}{2 \mu} \frac{d P}{d r}\right] \int_{-H}^{H} 1-\frac{z^{2}}{H^{2}} d z \\
& U(r)=\frac{-H^{2}}{2 \mu} \frac{d P}{d r}\left(\frac{2}{3}\right)=\frac{Q}{2 \pi H r}
\end{aligned}
$$

So $\quad \frac{-H^{2}}{2 \mu} \frac{d P}{d r}=\frac{3 Q}{4 \pi+r}$
and $\underbrace{V_{r}=\frac{1}{r}\left[\frac{3 Q}{4 \pi H}\left(1-\frac{z^{2}}{H^{2}}\right)\right]}_{f(z)}$

Problem 2

K. Doffran

1. $-\underline{n} \cdot \underline{v}_{1}=v_{1}=v$
2. $-\underline{n} \cdot \underline{v}_{2}=-v_{2}$
3. $-\underline{n} \cdot \underline{v}_{3}=-v_{3}$

Conservation of mass: $0=\int_{x^{x}}(-\underline{n} \cdot \underline{v}) d s$

$$
0=v b_{1}+v_{2} b_{2}-v_{3} b_{3}
$$

Since we are neglecting vise presence an anciphic 2 safer號 Then Bernoulli equation says That $\frac{1}{2} \mathrm{Cv}^{2}$ is a constant on a streamline. Thus:
\# $V_{1}=V_{2}=V_{3} \quad$ (magnitudes are equal)

Substitute This into The mass balance and we get

$$
b_{1}=b_{2}+b_{3}
$$

To use conservation of mowentiom, we reed The vector forms of the velacitiosand the force:

$$
\begin{aligned}
& \underline{v}_{1}=V\left(\cos \beta i_{x}-\sin \beta i_{y}\right) \\
& \underline{v}_{2}=V_{i_{x}} \\
& \underline{V}_{3}=-V_{i_{x}} \\
& \underline{F}=F_{i_{y}}
\end{aligned}
$$

Negleetry Te indicated forces, The linear momentum equation adopts the form:

$$
\begin{aligned}
\underline{0} & =\int_{\partial \lambda}(-\underline{n} \cdot \underline{v}) \rho \underline{v} d s+\underline{F} \\
& =\int_{1} v \rho \underline{v}_{1} d s+\int_{2}(-v) \rho x_{2}^{d} d+\int_{3}(-v) \rho \underline{v}_{3} d s+F_{-y} \\
O_{i_{x}}+0_{i_{y}} & =\rho v^{2} b_{1}\left(\cos \beta i_{x}-\sin \beta i_{y}\right)+(-v) \rho v b_{2} i_{x}+(-v) \rho\left(-v i_{x}\right) b_{3}+F_{i_{y}}
\end{aligned}
$$

For the y-component:

$$
0=-\rho v^{2} b_{1} \sin \beta+F_{y} \Rightarrow b_{1}=\frac{F_{y}}{\rho v^{2} \sin \beta}
$$

For the x-component:

$$
\begin{aligned}
& 0=\rho v^{2} \cos \beta b_{1}-c v^{2} b_{2}+e v^{2} b_{3}=0 \\
& 0=b_{1} \cos \beta-b_{2}+b_{3} \quad \text { (from } b_{3}=b_{1}-b_{2} \text { from c-mesa) } \\
& 0=b_{1} \cos \beta-b_{2}+b_{1}-b_{2} \\
& b_{2}=b_{1}(1+\cos \beta) \\
& b_{3}=b_{1}-b_{2}=\frac{b_{1}(1-\cos \beta)}{2}
\end{aligned}
$$

