PROBLEM 3.70
KNOWN: Cylindrical and spherical shellswith uniform heat generation and surface temperatures.
FIND: Radia distributions of temperature, heat flux and heat rate.

SCHEMATIC:
Cylindrical shell Spherical shell

T. r
s,2 2
ASSUMPTIONS: (1) One-dimensional, steady-state conduction, (2) Uniform heat generation, (3)
Constant k.

ANALYSIS: (@) For the cylindrical shell, the appropriate form of the heat equation is

rderrH k

The general solutionis
q 2
T(r)=—-——r“+CyInr +C
(r) 2 TG 2
Applying the boundary conditions, it follows that

T(I’l) = TS,l = —% I’12 +C1In i +C2

T(r2)=Ts2 = ‘4—1f22 +Cylnry +Cp
which may be solved for

G = gq/4k)(f22 —f12) +(Ts,2 _Ts,l)g/ln(rZ/rl)

C2 :TS,Z +(C]/4k)l’22 —Olln ro
Hence,

| ‘ In(r/r
()= Tz +(@a(F %) {8 ) (12 Tl )

With " = -k dT/dr, the heat flux distribution is
(r)=4

()=0r- k g<’1/4|<)(f22 ‘f12)+(Ts,2 _Ts,l)g
2 rin(ro/n)

<
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PROBLEM 3.70 (Cont.)

Similarly, withq= q" A(r) = q' (21rL), the heat rate distribution is

. 2_2
2Lk gq/4k)(r2 ¥ )+(TS'2 —Ts,1)5
In(rp/ry)
(b) For the spherical shell, the heat equation and general solution are

1dQedig q_,
r2 drH drd k

a(r) = nLQr2 -

T(r) = —(/6k)r% —Cyfr +Cy
Applying the boundary conditions, it follows that

T () =Tsy = —(a/6k) ¥ ~Cyfr +C

T(r2)=Ts2 = —(4/6k) 5 —Cyiry +Cy

Hence,
Ci = EQ/ Gk)(fz2 ‘flz) +(Ts.2 ‘Ts,l)g/[(]/ n) -(Urp)]

Cr=Ts2 +(a/6k)r5 +Cylr

and

T(r)=Ts2 +(Q/6k)(f22 —fz) —gcﬁ/ﬁk)(rz2 —rlz) +(Ts 2 —E,l)%m

(¥n)-(¥r2)

With ' (r) = - k dT/dr, the heat flux distribution is

g gq/6)(r22—r12)+k(T512 —TS11)5 L
q (r)=§r— 2

(Vn)-(¥r2)

4m2) . the heat rate distribution is

——

and, withgq=q

g s T gq/es)(rz2 _ r12) k(T2 -Ter )

3 Wn)-(Wr)

a(r)



PROBLEM 3.73
KNOWN: Composite wall with outer surfaces exposed to convection process.

FIND: (a) Volumetric heat generation and thermal conductivity for material B required for special
conditions, (b) Plot of temperature distribution, (c) T, and T,, aswell as temperature distributions
corresponding to loss of coolant condition where h = 0 on surface A.

SCHEMATIC: . .
T1=2610C 2=2117°C Lr=30mm
Lg =30 mm
Toh 111 Tt =250 Lc=20mm
h=1000 W/m2:K  ka = 25 W/mIK
ke =50 W/mK

—Lp —}«—2Lg —|—L |
I B~ c—
ASSUMPTIONS: (1) Steady-state, one-dimensional heat transfer, (2) Negligible contact resistance at

interfaces, (3) Uniform generation in B; zeroin A and C.
ANALYSIS: (a) From an energy balance on wall B,

Ein ~Eout *Eg =Eg«

—qi —q'2 +20Lg =0

dg = (o1 +d2)/2Lg .
To determine the heat fluxes, q; and g3, construct thermal circuits for A and C:

T..=25°C T4 =261°C To=211°C Tn=25°C
— — o~/ VW WWANO
omo % 72 Re=Lo/ks R'cony=1h

a1 = (T2~ Teo )/(V +L A /KA ) a2 = (T2 - T )/(Le/kc +1/h)

= (261- 25) C/D 1 , 0osom L 0, = (211-25) C/ 0.020m 1O
Elooow/mztk 25W/mﬂ<ﬁ %OW/mEK 1000w/ m? [KE

4] = 236°C/(0.001+0.0012) m? (K /W 4} =186° C/(0.0004 +0.001) m? (K /W

o =107, 273W/ m? o = 132,857 W,/ m?

Using the valuesfor gj and g5 in Eq. (1), find
dg = (106, 818+132,143W/ m2) / 2x0.030m =400 x10° W/m? <
To determine kg, use the general form of the temperature and heat flux distributionsin wall B,

4 2 . 0 q O
T(x)=-——x" +C;x +C oy (X) =k X +Cy 1,2
2 X B kg E

2kg

there are 3 unknowns, C;, C, and kg, which can be evaluated using three conditions,
Continued...



PROBLEM 3.73 (Cont.)

T(-Lg)=T = _;TBHB)Z —CiLg +Cy where T, = 261°C 3
B
T(+Lg)=Tz2 = _:TB(JfLB)Z +Cilg +C) where T, = 211°C (4
B
ay (-Lg) = = kg - (1g) +c:1D where ¢y = 107,273 W/m? (5)
H kg d

Using IHT to solve Egs. (3), (4) and (5) simultaneously with gg = 4.00 x 10° W/m®, find
kg =15.3W/m K <

(b) Following the method of analysisin the IHT Example 3.6, User-Defined Functions, the temperature
distribution is shown in the plot below. The important features are (1) Distribution is quadratic in B, but
non-symmetrical; linear in A and C; (2) Because thermal conductivities of the materials are different,
discontinuities exist at each interface; (3) By comparison of gradientsat X = -Lg and +Lg, find g5 > q; .

(c) Using the same method of analysis asfor Part (c), the temperature distribution is shown in the plot
below when h = 0 on the surface of A. Since the left boundary is adiabatic, material A will be isothermal
aT,. Find

T, =835°C T, = 360°C <
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PROBLEM 3.95

KNOWN: Dimensions and thermal conductivity of a spherical container. Thermal conductivity and
volumetric energy generation within the container. Outer convection conditions.

FIND: (a) Outer surface temperature, (b) Container inner surface temperature, (c) Temperature
distribution within and center temperature of the wastes, (d) Feasibility of operating at twice the energy
generation rate.

SCHEMATIC:

Stainless steel
kss = 15 W/im-K

S,0
Ts,i
\
T.=250C 1
el 2. Rad|oact|ve wastes
h'=1000 Wim=-K = =20 WimK, ¢ = 10% Wim3

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant propertles (3) One-dimensional radial
conduction.

ANALYSIS: (&) For acontrol volume which includes the container, conservation of energy yields
. 2
q(4/3)(mi3) =h4718 (Tso ~Too )
and with ¢ = 10° W/n’,
5 2 3
o 100 W/ m~(0.5m
Too = To +q'2_25c:+ /2( ) .
32 3000W/m? K (0.6m)

(b) Performing a surface energy balance at the outer surface, Ej; —Equt =0 0r deond — Geonv =0-
Hence

=36.6°C. <

Ak s (Ts,i - Ts,o)

Vnr)-(¥r)
1000w/ m? (K

=T, +— T, ) =366°C +——————(0.2)0.6 (11.6°c) —1204°Cc . <
Tsi =Tso H_ ]Hro s0 ~ lSW/mDK ( ) m

(c) The heat equation in spherical coordinatesis

= h4mg (Tso ~Teo )

dQg 2d_TD+ i
Krw drH B
Solving,
SdT o o’
rc—-=- +Cp and T(r)=- —= +C,
dr 3Kpw 6Ky T
Applying the boundary conditions,
ar =0 and T(r)=Tsj
drlr=o
_ - 2

Continued...



PROBLEM 3.95 (Cont.)

Hence
. .4 (_2_2) -

T(r)=T.

(r) s,|+6krwr| r
Atr=0,

.2 5 3 )
T(0)=Tgj +- 1 =1294°C +2° w/mi(0sm)® oo <
T Bk 6(20W/m|:|K)

(d) The feasibility assessment may be performed by using the IHT model for one-dimensional, steady-
state conduction in a solid sphere, with the surface boundary condition prescribed in terms of the total
thermal resistance

2
: (@) - @ 10 OF
Rtot,i :(4mi2)Rtot =Rend,i +Ronv,i == I Ik) Wo) +FE1FI_E
SS 0

where, for r, = 0.6 mand h = 1000 W/m?[K,, Rgngj = 5.56 x 10° mPK/W, R = 6.94 x 10 mK/W,

and Rigt =6.25x 10° m’[K/W. Resuilts for the center temperature are shown below.
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Clearly, even with r, = 0.54 m = r, in and h = 10,000 W/m?IK (apractical upper limit), T(0) > 475°C and
the desired condition can not be met. The corresponding resistances are Repgj = 2.47 X 10° mPK/W,

Rgnyi =857 x 10° mK/W, and Riq j = 2.56 x 10°° m’IK/W. The conduction resistance remains

dominant, and the effect of reducing R'Cm,,i by increasing his small. The proposed extension is not
feasible.

COMMENTS: A valueof ¢ = 1.79 x 10° W/m® would allow for operation at T(0) = 475°C with r, =
0.54 m and h = 10,000 W/m’K.



PROBLEM 3.112

KNOWN: Rod (D, k, 2L) inserted into a perfectly insulating wall, exposing one-half of its length to
an airstream (T, h). An electromagnetic field induces a uniform volumetric energy generation (¢)
in the imbedded portion.

FIND: (&) Derive an expression for T, at the base of the exposed half of the rod; the exposed region
ma%/ be approximated as a very long fin; (b) Derive an expression for T, at the end of the imbedded
halt of therod, and (c) Using numerical values, plot the temperature distribution in the rod and
describe its key features. Does the rod behave as avery long fin?

SCHEMATIC:
T = 20°C
/— Tp h = 100 W/m2-K
D=5mm

g J | L = 50 mm

| g | k=25 Wim-K _
o + o 3 =1x10° W/

AW o b 97 X0 Wm

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in imbedded portion
of rod, (3) Imbedded portion of rod is perfectly insulated, (4) Exposed portion of rod behaves as an
infinitely long fin, and (5) Constant properties.

ANALYSIS: (a) Sincethe exposed portion of therod (0 < x < + L) behaves as an infinite fin, the fin
heat rate using Eq. 3.80is

BEBELLS
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toe!

s
toe!

e
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R
AEEELBSE,
ﬂﬁ&% S

ax (0)=ar =M =(hPkA )Y 2(Tp -T.,) (1)

From an energy balance on the imbedded portion of the rod,

af =QqAcL 2)
Combining Egs. (1) and (2), withP=1D and A. = T[D2/4, find
Tp = Teo +0 (hPKAL) ™2 =T,, +aaY 2L (hPk) ™2 @ <

(b) The imbedded portion of the rod (-L < x < 0) experiences one-dimensional heat transfer with
uniform ¢. From Eqg. 3.43,

12
gL
T, =—+T, <
0 oK b
(c) The temperature distribution T(x) for the rod is piecewise parabolic and exponential,
2
oL [x[F
T(x)-Tp =— -L <x <0
()= = A T
T(X)-Te
L=exp(—mx) Osx <+l
Tp ~Teo

Continued .....



PROBLEM 3.112 (Cont.)

The gradient at x = 0 will be continuous since we used this condition in evaluating Tp. The

distribution is shown below with To = 105.4°C and T, = 55.4°C.
T(x) over embedded and exposed portions of rod
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