
PROBLEM 3.70

KNOWN:  Cylindrical and spherical shells with uniform heat generation and surface temperatures.

FIND:  Radial distributions of temperature, heat flux and heat rate.

SCHEMATIC:

ASSUMPTIONS:  (1)  One-dimensional, steady-state conduction, (2) Uniform heat generation,  (3)
Constant k.

ANALYSIS:  (a) For the cylindrical shell, the appropriate form of the heat equation is
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which may be solved for

( )( ) ( ) ( )2 2
1 2 1 s,2 s,1 2 1C q/4k r r T T ln r /r= − + − 

  
�

( ) 2
2 s,2 2 1 2C T q 4k r C ln r= + −�

Hence,

( ) ( )( ) ( )( ) ( ) ( )
( )

2 2 2 2 2
s,2 2 2 1 s,2 s,1

2 1

ln r/r
T r T q 4k r r q 4k r r T T

ln r /r
= + − + − + − 

  
� � <

With q k dT/dr′′ = − , the heat flux distribution is
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Similarly, with q = q′′ A(r) = q′′ (2πrL), the heat rate distribution is
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(b)  For the spherical shell, the heat equation and general solution are
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Applying the boundary conditions, it follows that
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With q′′ (r) = - k dT/dr, the heat flux distribution is
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and, with q = ( )2q 4 rπ′′ , the heat rate distribution is
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PROBLEM 3.73

KNOWN:  Composite wall with outer surfaces exposed to convection process.

FIND:  (a) Volumetric heat generation and thermal conductivity for material B required for special
conditions, (b) Plot of temperature distribution, (c) T1 and T2, as well as temperature distributions
corresponding to loss of coolant condition where h = 0 on surface A.

SCHEMATIC:

LA = 30 mm
LB = 30 mm
LC = 20 mm
kA = 25 W/m⋅K
kC = 50 W/m⋅K

ASSUMPTIONS:  (1) Steady-state, one-dimensional heat transfer, (2) Negligible contact resistance at
interfaces, (3) Uniform generation in B; zero in A and C.

ANALYSIS:  (a) From an energy balance on wall B,
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To determine the heat fluxes, ��q1  and ��q2 , construct thermal circuits for A and C:
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Using the values for 1q′′  and 2q′′  in Eq. (1), find
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To determine kB, use the general form of the temperature and heat flux distributions in wall B,
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there are 3 unknowns, C1, C2 and kB, which can be evaluated using three conditions,
Continued...
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where 1q′′  = 107,273 W/m2 (5)

Using IHT to solve Eqs. (3), (4) and (5) simultaneously with Bq�  = 4.00 × 106 W/m3, find

Bk 15.3 W m K= ⋅ <
(b) Following the method of analysis in the IHT Example 3.6, User-Defined Functions, the temperature
distribution is shown in the plot below.  The important features are (1) Distribution is quadratic in B, but
non-symmetrical; linear in A and C; (2) Because thermal conductivities of the materials are different,
discontinuities exist at each interface; (3) By comparison of gradients at x = -LB and +LB, find 2q′′  > 1q′′ .

(c) Using the same method of analysis as for Part (c), the temperature distribution is shown in the plot
below when h = 0 on the surface of A.  Since the left boundary is adiabatic, material A will be isothermal
at T1.  Find

T1 = 835°C            T2 = 360°C <
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PROBLEM 3.95

KNOWN:  Dimensions and thermal conductivity of a spherical container.  Thermal conductivity and
volumetric energy generation within the container.  Outer convection conditions.

FIND:  (a) Outer surface temperature, (b) Container inner surface temperature, (c) Temperature
distribution within and center temperature of the wastes, (d) Feasibility of operating at twice the energy
generation rate.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional radial
conduction.

ANALYSIS:  (a) For a control volume which includes the container, conservation of energy yields

g outE E 0− =� � , or convqV q 0− =� .  Hence
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(b) Performing a surface energy balance at the outer surface, in outE E 0− =� �  or cond convq q 0− = .

Hence
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(c) The heat equation in spherical coordinates is
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Solving,
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Applying the boundary conditions,
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Hence
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(d) The feasibility assessment may be performed by using the IHT model for one-dimensional, steady-
state conduction in a solid sphere, with the surface boundary condition prescribed in terms of the total
thermal resistance
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R 4 r R R R
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where, for ro = 0.6 m and h = 1000 W/m2⋅K, cnd,iR ′′  = 5.56 × 10-3 m2⋅K/W, cnv,iR ′′  = 6.94 × 10-4 m2⋅K/W,

and tot,iR ′′  = 6.25 × 10-3 m2⋅K/W.  Results for the center temperature are shown below.
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Clearly, even with ro = 0.54 m = ro,min and h = 10,000 W/m2⋅K (a practical upper limit), T(0) > 475°C and
the desired condition can not be met.  The corresponding resistances are cnd,iR ′′  = 2.47 × 10-3 m2⋅K/W,

cnv,iR ′′  = 8.57 × 10-5 m2⋅K/W, and tot,iR ′′  = 2.56 × 10-3 m2⋅K/W.  The conduction resistance remains

dominant, and the effect of reducing cnv,iR ′′  by increasing h is small.  The proposed extension is not

feasible.

COMMENTS:  A value of q�  = 1.79 × 105 W/m3 would allow for operation at T(0) = 475°C with ro =

0.54 m and h = 10,000 W/m2⋅K.



PROBLEM 3.112

KNOWN:  Rod (D, k, 2L) inserted into a perfectly insulating wall, exposing one-half of its length to

an airstream (T∞, h).  An electromagnetic field induces a uniform volumetric energy generation ( )q�

in the imbedded portion.

FIND:  (a) Derive an expression for Tb at the base of the exposed half of the rod; the exposed region
may be approximated as a very long fin; (b) Derive an expression for To at the end of the imbedded
half of the rod, and (c) Using numerical values, plot the temperature distribution in the rod and
describe its key features.  Does the rod behave as a very long fin?

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in imbedded portion
of rod, (3) Imbedded portion of rod is perfectly insulated, (4) Exposed portion of rod behaves as an
infinitely long fin, and (5) Constant properties.

ANALYSIS:  (a) Since the exposed portion of the rod (0 ≤ x ≤ + L) behaves as an infinite fin, the fin
heat rate using Eq. 3.80 is

( ) ( ) ( )1/ 2
x f c bq 0 q M hPkA T T∞= = = − (1)

From an energy balance on the imbedded portion of the rod,

f cq q A L= � (2)

Combining Eqs. (1) and (2), with P = πD and Ac = πD
2
/4, find

( ) ( )1/ 2 1/ 21/ 2
b f c cT T q hPkA T qA L hPk− −

∞ ∞= + = + �      (3)  <
(b) The imbedded portion of the rod (-L ≤ x ≤ 0) experiences one-dimensional heat transfer with
uniform q� .  From Eq. 3.43,

2
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(c) The temperature distribution T(x) for the rod is piecewise parabolic and exponential,
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The gradient at x = 0 will be continuous since we used this condition in evaluating Tb.  The

distribution is shown below with To = 105.4°C and Tb = 55.4°C.
T(x) over embedded and exposed portions of rod
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