
PROBLEM 7.2

KNOWN:  Temperature and velocity of engine oil.  Temperature and length of flat plate.

FIND:  (a) Velocity and thermal boundary layer thickness at trailing edge, (b) Heat flux and surface
shear stress at trailing edge, (c) Total drag force and heat transfer per unit plate width, and (d) Plot the
boundary layer thickness and local values of the shear stress, convection coefficient, and heat flux as a
function of x for 0 ≤ x ≤ 1 m.

SCHEMATIC:

ASSUMPTIONS:  (1) Critical Reynolds number is 5 × 105, (2) Flow over top and bottom surfaces.

PROPERTIES:  Table A.5, Engine Oil (Tf = 333 K):  ρ = 864 kg/m3, ν = 86.1 × 10-6 m2/s, k = 0.140
W/m⋅K, Pr = 1081.

ANALYSIS:  (a) Calculate the Reynolds number to determine nature of the flow,

L 6 2
u L 0.1m s 1m

Re 1161
86.1 10 m sν

∞
−
×= = =

×

Hence the flow is laminar at x = L, from Eqs. 7.19 and 7.24, and

( )( ) 1/ 21/ 2
L5L Re 5 1m 1161 0.147 mδ −−= = = <

( ) 1/31/3
t Pr 0.147 m 1081 0.0143mδ δ −−= = = <

(b) The local convection coefficient, Eq. 7.23, and heat flux at x = L are

( ) ( )1/ 2 1/31/ 2 1/3 2
L L

k 0.140 W m K
h 0.332Re Pr 0.332 1161 1081 16.25W m K

L 1m

⋅= = = ⋅

( ) ( )2 2
x L sq h T T 16.25W m K 20 100 C 1300 W m∞′′ = − = ⋅ − = −$ <

Also, the local shear stress is, from Eq. 7.20,

( ) ( )
2 3

2 1/ 21/ 2
s,L L

u 864 kg m
0.664 Re 0.1m s 0.664 1161

2 2

ρτ −−∞= =

2 2
s,L 0.0842 kg m s 0.0842 N mτ = ⋅ = <

(c) With the drag force per unit width given by s,LD 2Lτ′ =  where the factor of 2 is included to account

for both sides of the plate, it follows that

( ) ( ) ( ) ( )2 1/ 22 1/ 2 3
LD 2L u 2 1.328Re 1m 864 kg m 0.1m s 1.328 1161 0.337 N m/ 2ρ −−

∞′ = = = <
For laminar flow, the average value Lh  over the distance 0 to L is twice the local value, hL,

2
L Lh 2h 32.5W m K= = ⋅

The total heat transfer rate per unit width of the plate is

( ) ( ) ( )2
L sq 2Lh T T 2 1m 32.5W m K 20 100 C 5200 W m∞′ = − = ⋅ − = −$ <

Continued...



PROBLEM 7.2 (Cont.)

(c) Using IHT with the foregoing equations, the boundary layer thickness, and local values of the
convection coefficient and heat flux were calculated and plotted as a function of x.
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COMMENTS:  (1) Note that since Pr >> 1, δ >> δt.  That is, for the high Prandtl liquids, the velocity
boundary layer will be much thicker than the thermal boundary layer.

(2) A copy of the IHT Workspace used to generate the above plot is shown below.

// Boundary layer thickness, delta
delta = 5 * x * Rex ^-0.5
delta_mm = delta * 1000
delta_plot = delta_mm * 10            // Scaling parameter for convenience in  plotting

// Convection coefficient and heat flux, q''x
q''x = hx * (Ts - Tinf)
Nux = 0.332 * Rex^0.5 * Pr^(1/3)
Nux = hx * x / k
hx_plot = 100 * hx                          // Scaling parameter for convenience in plotting
q''x_plot = ( -1 ) * q''x                      // Scaling parameter for convenience in plotting

// Reynolds number
Rex = uinf * x / nu

// Properties Tool: Engine oil
// Engine Oil property functions : From Table A.5
// Units: T(K)
rho = rho_T("Engine Oil",Tf) // Density, kg/m^3
cp = cp_T("Engine Oil",Tf) // Specific heat, J/kg·K
nu = nu_T("Engine Oil",Tf) // Kinematic viscosity, m^2/s
k = k_T("Engine Oil",Tf) // Thermal conductivity, W/m·K
Pr = Pr_T("Engine Oil",Tf) // Prandtl number

// Assigned variables
Tf = (Ts + Tinf) / 2 // Film temperature, K
Tinf = 100 + 273 // Freestream temperature, K
Ts = 20 + 273 // Surface temperature, K
uinf = 0.1 // Freestream velocity, m/s
x = 1 // Plate length, m



PROBLEM 7.18

KNOWN:  Square solar panel with an area of 0.09 m
2
 has solar-to-electrical power conversion

efficiency of 12%, solar absorptivity of  0.85, and emissivity of 0.90.  Panel experiences a 4 m/s
breeze with an air temperature of 25°C and solar insolation of 700 W/m

2
.

FIND:  Estimate the temperature of the solar panel for: (a) The operating condition (on)
described above when the panel is producing power, and (b) The off condition when the solar
array is inoperative.  Will the panel temperature increase, remain the same or decrease, all other
conditions remaining the same?

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) The backside of the panel experiences no heat
transfer, (3) Sky irradiation is negligible, and (4) Wind is in parallel, fully turbulent flow over the
panel.

PROPERTIES:  Table A-4, Air (Assume Tf = 300 K, 1 atm):  ν = 15.89 × 10
-6

 m
2
/s, k = 0.0263

W/m⋅K, Pr = 0.707.

ANALYSIS:  (a) Perform an energy balance on the panel as represented in the schematic above
considering convection, absorbed insolation, emission and generated electrical power.

in out genE E E 0− + =� � �

4
cv S S s s elecq G T A P 0α εσ − + − − =  

(1)

Using the convection rate equation and power conversion efficiency,

( )cv L s s elec e S S sq h A T T P G Aη α∞= − = (2,3)

The average convection coefficient for fully turbulent conditions is

L
4 /5 1/ 3
LNu hL / k 0.037 Re Pr= =

6 2 4
LRe u L / 4m / s 0.3m /15.89 10 m / s 7.49 10ν −

∞= = × × = ×

( ) ( ) ( )
4 /5 1/34

Lh 0.0263 W / m K / 0.3m 0.037 7.49 10 0.707= ⋅ × × ×

2
Lh 23.0 W / m K= ⋅

Substituting numerical values in Eq. (1) using Eqs. (2 and 3) and dividing through by As, find Ts.

Continued …..



PROBLEM 7.18 (Cont.)

( )2 2 8 2 4 4
s s23 W / m K T 298 K 0.85 700 W / m 0.90 5.67 10 W / m K T−⋅ − + × − × × ⋅

20.12 0.85 700 W / m 0 − × =  
(4)

sT 302.2 K 29.2 C= = ° <

(b) If the solar array becomes inoperable (off) for reason of wire bond failures or the electrical
circuit to the battery is opened, the Pelec term in the energy balance of Eq. (1) is zero.  Using Eq.

(4) with ηe = 0, find

sT 31.7 C= ° <

COMMENTS:  (1) Note how the electrical power Pelec is represented by the genE�  term in the

energy balance.  Recall from Section 1.2 that genE�  is associated with conversion from some form

of energy to thermal energy.  Hence, the solar-to-electrical power conversion (Pelec) will have a
negative sign in Eq. (1).

(2) It follows that when the solar array is on, a fraction (ηe) of the absorbed solar power (thermal
energy) is converted to electrical energy.  As such, the array surface temperature will be higher in
the off condition than in the on condition.

(3) Note that the assumed value for Tf at which to evaluate the properties was reasonable.



PROBLEM 7.26

KNOWN:  Velocity, initial temperature, and dimensions of aluminum strip on a production line.
Velocity and temperature of air in counter flow over top surface of strip.

FIND:  (a) Differential equation governing temperature distribution along the strip and expression for
outlet temperature, (b) Value of outlet temperature for prescribed conditions.

SCHEMATIC:

ASSUMPTIONS:  (1) Negligible variation of sheet temperature across its thickness, (2) Negligible
effect of conduction along length (x) of sheet, (3) Negligible radiation, (4) Turbulent flow over entire
top surface, (5) Negligible effect of sheet velocity on boundary layer development, (6) Negligible heat
transfer from bottom surface and sides, (7) Constant properties.

PROPERTIES:  Table A-1, Aluminum, 2024-T6 ( ) 3
ALT 500K 2770 kg / m ,:ρ≈ =  pc 983 J / kg K,= ⋅

k=186 W/m⋅K.  Table A-4, Air ( )fp 1atm, T 400K := ≈  6 226.4 10 m / s,ν −= ×  k 0.0338 W / m K,= ⋅
Pr 0.69=

ANALYSIS:  (a) Applying conservation of energy to a stationary control surface, through which the
sheet moves, steady-state conditions exist and in outE E 0.− =� �   Hence, with inflow due to advection

and outflow due to advection and convection,

( )c p c pV A c T dT V A c T dq 0ρ ρ+ − − =

( ) ( )p xV W c dT h dx W T T 0ρ δ ∞+ − ⋅ − =

( )x

p

dT h
T T

dx V cρ δ ∞= + −       (1)  <

Alternatively, if the control surface is fixed to the sheet, conditions are transient and the energy
balance is of the form, out stE E ,− =� �  or

( )( ) ( )x p
dT

h dx W T T dx W c
dt

ρ δ∞− ⋅ − = ⋅ ⋅

( )x

p

dT h
T T

dt cρ δ ∞= − −

Dividing the left- and right-hand sides of the equation by dx/dt and dx/dt = - V, respectively, equation
(1) is obtained.  The equation may be integrated from x = 0 to x = L to obtain

i

o

T L
xT 0p

dT L 1
h dx

T T V c Lρ δ∞

 =  −  ∫ ∫
Continued …..



PROBLEM 7.26 (Cont.)

where ( ) 4 / 5 1/ 3
x xh k / x 0.0296 Re Pr=  and the bracketed term on the right-hand side of the equation

reduces to ( ) 4 / 5 1/ 3
L Lh k / L 0.037 Re Pr .=

Hence,

i L

o p

T T L h
ln

T T V cρ δ
∞
∞

 − = − 

o L

i p

T T L h
exp

T T V cρ δ
∞
∞

 − = −  −  
<

(b) For the prescribed conditions, 6 2 6
LRe u L / 20 m / s 5m / 26.4 10 m / s 3.79 10ν −

∞≈ = × × = ×  and

( ) ( )
4 /5 1/36 2

L
0.0338 W / m K

h 0.037 3.79 10 0.69 40.5W / m K
5m

⋅ = × = ⋅  

( )
2

o 3

5m 40.5 W / m K
T 20 C 280 C exp 213 C

2770 kg / m 0.1m / s 0.002m 983J / kg K

× ⋅
= ° + ° − = °

× × × ⋅

 
   

<

COMMENTS:  (1) With oT 213 C,= °  Al fT 530K and T 411K= =  are close to values used to

determine the material properties, and iteration is not needed.  (2) For a representative emissivity of

sur0.2 and T T ,ε ∞= =  the maximum value of the radiation coefficient is

( )( )2 2
r i sur i surh T T T Tεσ= ++  2

L4.1W / m K h .= ⋅ <<   Hence, the assumption of negligible radiation

is appropriate.



PROBLEM 7.45

KNOWN:  Pin fin of 10 mm diameter dissipates 30 W by forced convection in cross-flow of air with

ReD = 4000.

FIND:  Fin heat rate if diameter is doubled while all conditions remain the same.

SCHEMATIC:

ASSUMPTIONS:  (1) Pin behaves as infinitely long fin, (2) Conditions of flow, as well as base and
air temperatures, remain the same for both situations, (3) Negligible radiation heat transfer.

ANALYSIS:  For an infinitely long pin fin, the fin heat rate is

( )1/2
f conv c bq q hPkA θ= =

where P = πD and Ac = πD
2
/4.  Hence,

( )1/22
convq ~ h D D .⋅ ⋅

For forced convection cross-flow over a cylinder, an appropriate correlation for estimating the
dependence of h  on the diameter is

D

m
m 1/3 1/3
D

hD VD
Nu CRe  Pr C Pr .

k ν
 = = =  
 

From Table 7.2 for ReD = 4000, find m = 0.466 and

( )0.4661 0.534h~D D D .− −=

It follows that

( )1/20.534 2 1.23
convq ~ D D D D .− ⋅ ⋅ =

Hence, with q1 → D1 (10 mm) and q2 → D2 (20 mm), find

1.23 1.23
2

2 1
1

D 20
q q 30 W 70.4 W.

D 10

   = = =   
  

<

COMMENTS:  The effect of doubling the diameter, with all other conditions remaining the same, is
to increase the fin heat rate by a factor of 2.35.  The effect is nearly linear, with enhancements due to

the increase in surface and cross-sectional areas (D
1.5

) exceeding the attenuation due to a decrease in

the heat transfer coefficient (D
-0.267

).  Note that, with increasing Reynolds number, the exponent m
increases and there is greater heat transfer enhancement due to increasing the diameter.



Addendum to Problem 7.45 
 

Ignore everything after the average nusselt number expression in the book's solution.  
Instead, either of the two following methods are correct. 
 
Correct Method #1 
 
For ReD1 = 4000, From Table 7.2, C1 = .193, m1 = .618 
For ReD2 = 8000, From Table 7.2, C2 = .193, m2 = .618 
 
qconv1 = qconv2 ~(D-1D.618DD2)1/2 = D1.309 

 
qconv2 =qconv1 (D2/D1)1.309 = 30W (20/10)1.309 = 74.3 W 
 
Correct Method #2 
 
For ReD1 = 4000, From Table 7.2, C1 = .683, m1 = .466 
 
hoverbar1~D1

-1C1D1
.466 = .683D1

-.534 

 
qconv1 ~ (.683D1

-.534D1D1
2)1/2 = .826D1

1.23  
 
For D2 = 2D1, ReD2 = 2ReD1 = 8000, now from Table 7.2 C, C2 = .193, m2 = .618 
 
hoverbar2~D2

-1C2D2
.618 = .193D2

-.382 

 

qconv1 ~ (.193D2
-.382D2D2

2)1/2 = .439D2
1.309 

 

qconv2/qconv1 = ( .439D2
1.309) /(.826D1

1.23 ) = (.439(201.309))/(.862(101.23) = 1.51 
 
qconv2  = 30 W (1.51) = 45.4 W 
 
 
 
 
 
 



PROBLEM 8.12

KNOWN:  Internal flow with constant surface heat flux, ′′qs .

FIND:  (a) Qualitative temperature distributions, T(x), under developing and fully-developed flow,
(b) Exit mean temperature for both situations.

SCHEMATIC:

ASSUMPTIONS:  (a) Steady-state conditions, (b) Constant properties, (c) Incompressible flow.

ANALYSIS:  Based upon the analysis leading to Eq. 8.40, note for the case of constant surface
heat flux conditions,

mdT
 constant.

dx
=

Hence, regardless of whether the hydrodynamic or thermal boundary layer is fully developed, it
follows that

( )mT x is linear and

m,2T will be the same for all flow conditions. <
The surface heat flux can also be written, using Eq. 8.28, as

( ) ( )s s mq h T x T x .′′  = − 

Under fully-developed flow and thermal conditions, h = hfd is a constant.  When flow is developing h

> hfd.  Hence, the temperature distributions appear as below.

<



PROBLEM 8.18

KNOWN:  Laminar, slug flow in a circular tube with uniform surface heat flux.

FIND:  Temperature distribution and Nusselt number.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady, incompressible flow, (2) Constant properties, (3) Fully developed,
laminar flow, (4) Uniform surface heat flux.

ANALYSIS:  With v = 0 for fully developed flow and ∂T/∂x = dTm/dx = const, from Eqs. 8.33 and
8.40, the energy equation, Eq. 8.48, reduces to

m
o

d T  T
u   r .

dx r  r  r

α ∂ ∂
∂ ∂

 =  
 

Integrating twice, it follows that

( ) ( )
2

o m
1 2

u d T r
T r   C  n r C .

dx 4α
= + +l

Since T(0) must remain finite, C1 = 0.  Hence, with T(ro) = Ts

( ) ( )2
2 2o o om m

2 s s o
u r ud T d T

C T             T r T   r r .
dx 4 4 dxα α

= − = − − <
From Eq. 8.27, with um = uo,

( )r ro o

0 0

2 3o m
m s o2 2

o o

u2 2 d T
T   Tr dr   T r   rr r  dr

4 dxr r α
 = ∫ = ∫ − −  

2 4 4 2
o o o o o om m

m s s2
o

r u r r u r2 d T d T
T  T     T  .

2 4 dx 2 4 8 dxr α α

  
  = − − = −

    

From Eq. 8.28 and Fourier’s law,

ors

s m s m

 T
k  q  rh

T T T T

∂
∂′′

= =
− −

hence,

o o m

D2 oo o m

u r d T
k  

4k 8k hD2 dxh           Nu 8.
r D ku r d T

 
8 dx

α

α

 
 
 = = = = = <



PROBLEM 8.24

KNOWN:  Inlet temperature and flowrate of oil moving through a tube of prescribed diameter and
surface temperature.

FIND:  (a) Oil outlet temperature Tm,o for two tube lengths, 5 m and 100 m, and log mean and arithmetic

mean temperature differences, (b) Effect of L on Tm,o and DNu .

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible kinetic energy, potential energy and flow
work changes, (3) Constant properties.

PROPERTIES:  Table A.4, Oil (330 K):  cp = 2035 J/kg⋅K, µ = 0.0836 N⋅s/m2, k = 0.141 W/m⋅K, Pr =
1205.

ANALYSIS:  (a) Using Eqs. 8.42b and 8.6

( )m,o s s m,i
p

DL
T T T T exp h

mc

π 
= − − −   �

D 2
4m 4 0.5kg s

Re 304.6
D 0.025m 0.0836 N s mπ µ π

×= = =
× × ⋅

�

Since entry length effects will be significant, use Eq. 8.56

( )
( ) ( )

4
D

2/3 2 /3
D

0.0688 D L Re Prk 0.141W m K 2.45 10 D L
h 3.66 3.66

D 0.025m 1 205 D L1 0.04 D L Re Pr

   ⋅ ×   = + = +   + +     

For L = 5 m, ( ) 2h 5.64 3.66 17.51 119 W m K= + = ⋅ , hence

( ) 2

m,o
0.025m 5m 119 W m K

T 100 C 75 C exp 28.4 C
0.5kg s 2035J kg K

π × × × ⋅ = − − =
 × ⋅ 

$ $ $ <

For L = 100 m, ( ) 2h 5.64 3.66 3.38 40 W m K= + = ⋅ ,      Tm,o = 44.9°C. <
Also, for L = 5 m,

( ) ( )
o i

m
o i

T T 71.6 75
T 73.3 C

n T T n 71.6 75

∆ − ∆ −
∆ = = =

∆ ∆
$

"
" "

          ( )am o iT T T 2 73.3 C∆ = ∆ + ∆ = $ <

For L = 100 m,          mT 64.5 C∆ = $
" ,            amT 65.1 C∆ = $ <

(b) The effect of tube length on the outlet temperature and Nusselt number was determined by using the
Correlations and Properties Toolpads of IHT.

Continued...



PROBLEM 8.24 (Cont.)
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The outlet temperature approaches the surface temperature with increasing L, but even for L = 100 m,

Tm,o is well below Ts.  Although DNu  decays with increasing L, it is still well above the fully developed
value of NuD,fd = 3.66.

COMMENTS:  (1) The average, mean temperature, mT  = 330 K, was significantly overestimated in
part (a).  The accuracy may be improved by evaluating the properties at a lower temperature.  (2) Use of
∆Tam instead of mT∆ "  is reasonable for small to moderate values of (Tm,i - Tm,o).  For large values of

(Tm,i - Tm,o), mT∆ "  should be used.



PROBLEM 8.69

KNOWN:  Flow conditions associated with water passing through a pipe and air flowing over the pipe.

FIND:  (a) Differential equation which determines the variation of the mixed-mean temperature of the
water, (b) Heat transfer per unit length of pipe at the inlet and outlet temperature of the water.

SCHEMATIC:

ASSUMPTIONS:  (1) Negligible temperature drop across the pipe wall, (2) Negligible radiation
exchange between outer surface of insulation and surroundings, (3) Fully developed flow throughout
pipe, (4) Negligible potential and kinetic energy and flow work effects.

PROPERTIES:  Table A-6, Water (Tm,i = 200°C):  cp,w = 4500 J/kg⋅K, µw = 134 × 10
-6

 N⋅s/m
2
,

kw = 0.665 W/m⋅K, Prw = 0.91; Table A-4, Air (T∞ = - 10°C):  νa = 12.6 × 10
-6

 m
2
/s, ka = 0.023

W/m⋅K, Pra = 0.71, Prs ≈ 0.7.

ANALYSIS:  (a) Following the development of Section 8.3.1 and applying an energy balance to a
differential element in the water, we obtain

( )p,w m p,w m mm c  T dq m c T dT 0.− − + =& &

Hence p,w mdq m c  dT= − &

where ( ) ( )i i m i mdq U dA T T U  D dx T T .π∞ ∞= − = −

Substituting into the energy balance, it follows that

( )m i
m

p

d T U  D
T T .

dx m c

π
∞= − −

&
(1)  <

The overall heat transfer coefficient based on the inside surface area may be evaluated from Eq. 3.30
which, for the present conditions, reduces to

i

i o

1
U .

1 D D 2t D 1
n  

h 2k D D 2t h

=
+ + +  + 

l

(2)

For the inner water flow, Eq. 8.6 gives

( )
D 6w

4 m 4 2 kg/s
Re 19,004.

 D 1 m 134 10  kg/s mπ µ π −
×

= = =
× × ⋅

&

Continued …..



PROBLEM 8.69 (Cont.)

Hence, the flow is turbulent.  With the assumption of fully developed conditions, it follows from Eq.
8.60 that

4/5 0.3w
i wD

k
h 0.023 Re  Pr .

D
= × (3)

For the external air flow

( ) ( ) 5
D 6 2

V D+2t 4 m/s 1.3m
Re 4.13 10 .

12.6 10  m / sν −= = = ×
×

Using Eq. 7.31 to obtain the outside convection coefficient,

( ) ( )1/40.7 0.37a
o a a sD

k
h 0.076 Re  Pr  Pr /Pr .

D 2t
= ×

+
(4)

(b) The heat transfer per unit length of pipe at the inlet is

( )i m,iq  D U T T .π ∞′ = − (5)

From Eqs. (3 and 4),

( ) ( )4/5 0.3 2
i

0.665 W/m K
h 0.023 19,004  0.91 39.4 W/m K

1 m

⋅
= × = ⋅

( ) ( ) ( ) ( )
0.7 0.37 1 / 45 2

o
0.023 W/m K

h 0.076 4.13 10 0.71 1 10.1 W/m K.
1.3 m

⋅
= × × = ⋅

Hence, from Eq. (2)

1
2

i 2 2
1 1 m 1.3 1 1

U n 0.37 W/m K
0.1 W/m K 1 1.339.4 W/m K 10.1 W/m K

−  = + + × = ⋅  ⋅  ⋅ ⋅ 
l

and from Eq. (5)

( ) ( ) ( )2q 1 m  0.37 W/m K  200 10 C 244 W/m.π′ = ⋅ + =o <

Since Ui is a constant, independent of x, Eq. (1) may be integrated from x = 0 to x = L.  The result is
analogous to Eq. 8.42b and may be expressed as

m,o 2
i

m,i p,w

T T  DL 1m 500m
exp U exp 0.37 W/m K

T T m c 2 kg/s 4500 J/kg K

π π∞

∞

 −  × ×
= − = − × ⋅    − × ⋅  &

Hence m,o

m,i

T T
0.937.

T T
∞

∞

−
=

−

( )m,o m,iT T 0.937 T T 187 C.∞ ∞= + − = o <
COMMENTS:  The largest contribution to the denominator on the right-hand side of Eq. (2) is made
by the conduction term (the insulation provides 96% of the total resistance to heat transfer).  For this
reason the assumption of fully developed conditions throughout the pipe has a negligible effect on the

calculations.  Since the reduction in Tm is small (13°C), little error is incurred by evaluating all

properties of water at Tm,i.


