
10.34. Numerical Methods Applied to Chemical Engineering

Homework # 1.  Linear Algebraic Equation Sets

Assigned Friday 9/6/02, Due Friday 9/13/02

1. Solution of a mass balance problem

For the following separation system, we know the inlet mass flowrate (in Kg/hr) and the 
mass fractions of each species in the inlet (stream 1) and each outlet (streams 2, 4, and 5).

FIGURE 1. Process diagram for separation system

Here we use the notation that  is the mass flow rate of stream # i, and  is the mass 

fraction of species # j in stream # i.

We want to calculate the unknown mass flow rates of each outlet stream.  If we define the 
unknowns as

,   ,   (EQ 1)

and set up the mass balances for

1. the total mass flow rate

2. the mass flow rate of species 1

3. the mass flow rate of species 2
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we obtain a set of three linear algebraic equations for the three unknown outlet flow rates.

Convert this set of equations to matrix form, and solve the system by hand using Gaussian 
elimination with partial pivoting.

Make sure that you clearly identify what calculations you perform at each row and pivot 
operation.

2. Solution of a 1-D transport problem with finite differences

Background

In this problem, we consider the use of the method of finite differences to convert a 
boundary value problem from fluid mechanics into a set of linear algebraic equations. We 
will then modify the standard Gaussian elimination method to solve the resulting linear 
system in a very efficient manner.

Consider the case of a Newtonian fluid undergoing laminar, pressure-driven flow between 
two parallel, infinite flat plates separated by a distance  (see figure below). The bottom 
plate is stationary and the top plate moves at a constant velocity . We know the value of 
the constant dynamic pressure gradient, , , and wish to calculate the 
resulting velocity profile. 

FIGURE 2. Pressure-driven flow between two infinite, parallel, flat plates

If we assume a velocity profile of the form

(EQ 2)

the equation of continuity for an incompressible fluid, , is satisfied automatically 
and the Navier-Stokes equation,

(EQ 3)

reduces to
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(EQ 4)

subject to the no-slip boundary conditions

(EQ 5)

This is a classic problem from fluid mechanics that is solved easily by integrating the dif-
ferential equation twice and using the boundary conditions to specify the values of the 
constants of integration. The resulting solution is

(EQ 6)

We now wish to employ a numerical method to “solve” this problem by converting the 
boundary value problem into a set of algebraic equations. For this particular problem, 
there is little actual need to do so since an analytical solution is available.  We shall find, 
however, that the technique that we develop here can be used to obtain numerical approxi-
mations to the solution of boundary value problems even when no analytical solution 
exists.

For this example, we use the conceptually-simple method of finite differences that is 
based on the following definition of the derivative of a differentiable function ,

(EQ 7)

In the limit as , all three finite difference approximations agree. In the method of 
finite differences, we use finite, but “small”, values of  in one of these approximations 
to convert the derivatives appearing in a differential equation to algebraic forms. We shall 
study this method in more detail later; however, for now we merely note that the first 
approximation formula given above, the central difference approximation, is more accu-
rate than the one-sided differences.

Our differential equation in this example involves the second derivative of the velocity; 
therefore, we need to construct an algebraic approximation to this higher-order derivative. 
We place a grid of  points along the computational domain  (see figure below) at 
the locations,
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(EQ 8)

FIGURE 3. Placement of grid points for finite difference computation

At grid point j, we use a central-difference formula to approximate the local value of the 
second derivative of the velocity,

(EQ 9)

Here, the values of the first derivatives are evaluated at the mid-points between the grid 
locations.  We then use yet other central-difference formulas for these mid-point values,

(EQ 10)

(EQ 11)

to obtain the following approximation of the second derivative at each grid point,

(EQ 12)

In general, this algebraic approximation of the second derivative is not exact, and one 
must reduce the value of  by increasing the number of grid points  until the magnitude 
of the approximation error is below some acceptable value.  For this particular problem, 
since the true solution is a simple quadratic function, we are lucky and this algebraic 
approximation is exact.

To “solve” a boundary value problem using the method of finite diffferences, we formu-
late a set of  algebraic equations for the set of  unknowns .  For each grid 
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point, we need a separate algebraic equation, that we obtain by requiring the differential 
equation to hold locally,

(EQ 13)

If we insert the central-difference approximation for the second derivative, the algebraic 
equation for grid point  is

(EQ 14)

We write this in a more compact form by defining the column vector  as

(EQ 15)

so that the algebraic equation for grid point  becomes

(EQ 16)

If we assemble these equations in matrix form, we obtain the system

(EQ 17)

where

(EQ 18)

and

(EQ 19)
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To enforce the no-slip boundary conditions, we merely set in the right-hand side vector,

 (EQ 20)

By this technique, we have converted the original differential equation into a set of alge-
braic equations for the values of the velocity at each grid point.  The question now is how 
to solve this set of equations.  We note that the matrix in the system has a special structure 
- the only non-zero elements are located along the main diagonal and on the diagonals 
immediately above and below.  Such a matrix is said to be tridiagonal. We now consider 
how acknowledgement of this special structure allows us to solve the set of equations in a 
fraction of the time required by brute-force Gaussian elimination.

First, from the in-class discussion of Gaussian elimination, we note that the number of 
FLOP’s (Floating Point OPeration’s) required to perform the row operations in Gaussian 

elimination for a system of  unknowns is .  If we want, in general, to obtain an 
accurate solution of the differential equation, we may need to use a grid of 100 or more 
points, so that the number of FLOP’s required for Gaussian elimination is on the order of 1 
million.  In addition to CPU time, the memory requirements of storing the matrix are sig-

nificant, since a matrix for a system with  unknowns contains  elements, each requir-
ing its own location in memory.  As  increases, these numbers become much worse - the 
number of FLOP’s required to perform full Gaussian elimination on a system of 1000 
unknowns is on the order of 1 billion.

Because nearly all of the elements of the matrix are already zero, much of the effort of 
brute-force Gaussian elimination is a waste of time. In fact, we only need to perform one 
row operation per column to zero the element immediately below the diagonal.  Also, 
since each row only contains three non-zero values, the number of FLOP’s required for 
each row operation is a small number, not on the order of  as is the case in general.  For 
this system, we find that we can remove two of the nested for loops of the Gaussian elimi-
nation algorithm so that the total number of FLOP’s required to solve the system scales 
only linearly with .  This is a very important point, as this trick of taking advantage of 
the structure makes feasible the solution of this set of equations even when the number of 
grid points is very large. 

Also, note that we do not need  locations in memory to store the matrix, but rather need 
only allocate three column vectors with  components each. One of these column vectors 
is used to store the matrix values along the main diagonal, and two are allocated for the 
values in the diagonals immediately above and below.

Your assignment is the following :

A. Write a MATLAB m-file routine that solves a tridiagonal system of linear equations.  
As input, the routine takes four column vectors of length . The first three contain the 
matrix elements along the main diagonal and the diagonals immediately above and below.  
The fourth is the vector of “right-hand-side” values. 
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B. Using this routine, solve the linear system above for the case where the fluid is water 

( ,  ), the velocity of the upper plate is 1 mm/min, and the sepa-
ration between plates is 5 mm. For these conditions, make a plot of the maximum fluid 
velocity vs. the pressure gradient, making sure to stop your calculations when the Rey-
nolds’ number (defined in terms of the maximum velocity) becomes of the order 1 and the 
laminar flow solution is no longer expected to be valid. You may use the analytical solu-
tion to determine the magintude of pressure gradients to use, but use the numerical method 
to compute the velocity profile.  Submit with your results a MATLAB program showing 
how the calculations were performed.

3. Solution of a 2-D boundary value problem with finite differences

The advantage to be gained by exploiting matrix structure becomes even more significant 
when solving boundary value problems in multiple dimensions.  In this problem we con-
sider the solution of boundary value problems in multiple spatial dimensions, and the use 
of the built-in MATLAB elimination solver for sparse systems.

We wish to calculate the velocity profile  for laminar, pressure-driven flow of a 
Newtonian fluid through a long rectangular duct. The geometry of the problem, with the 
no-slip boundary conditions, is diagrammed in the figure below, 

FIGURE 4. Geometry of pressure-driven flow down a rectangular duct

For a constant dynamic pressure gradient, , the Navier-Stokes equation for this 
problem reduces to

(EQ 21)
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subject to the no-slip boundary conditions noted in the diagram above.

Again, to obtain a numerical solution to this problem using finite differences, we place a 
computational grid over the domain. For this 2-D problem, we will find the bookeeping a 
bit easier if we add grid points on the boundaries as well.  This increases the number of 
unknowns, but not by a significant fraction. We use a grid of  points in the x direction 
and  points in the y direction, so that the total number of points on the 2-D grid is . 
The numbering system used to identify each point in the grid is outlined in the diagram 
below. For the grid point at , we store the local value of the velocity in a column vec-
tor of dimension  at a “master index” position . Note in this diagram the 
master indices of the neighboring grid points in the x and y directions. We assume a uni-
form spacing between grid points in the x and y directions respectively of

(EQ 22)

so that the positions of the grid points are , .

FIGURE 5. Placement of grid points for duct flow problem

We now need to obtain a set of  algebraic equations to solve for the velocity at each 
grid point. For each boundary point, we simply enforce the no-slip boundary conditions. 
For example, the MATLAB code to set the coefficients of the matrix and right-hand-side 
vector for all boundary points along boundary # 1 is

j = Ny;   % for boundary along y = Ly

for i=1:Nx

     k = (i-1)*Ny + j;

     A(k,k) = 1; % this enforces a simple equality
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     b(k) = 0; % the value of the velocity along the boundary

end

For the interior points, we require that the differential equation be satisfied locally,

(EQ 23)

Let (P) signfify the point at  with master index . The points immedi-
ately to the “north” (N), “south” (S), “east” (E), and “west” (W) (and the values of their 
master indices) are shown in the figure below.

FIGURE 6. Local 2-D grid geometry for finite difference approximations

Let the values of the velocities at each of these grid points be . 

To approximate the value at (P) of the second-order partial derivative with respect to x, we 
first apply a central difference approximation based on the values of the first derivative at 
the mid-point locations (e) and (w),

(EQ 24)

For each of the mid-point first derivatives, we similarly use central difference approxima-
tions,
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(EQ 25)

This yields the following approximation for the second partial with respect to x at (P),

(EQ 26)

Similarly, the second partial with respect to y at (P) is approximated by,

(EQ 27)

If we now replace this “compass” notation for the grid velocities with the master index 
labels, the approximation formulas become

(EQ 28)

(EQ 29)

Using these finite difference approximations, the algebraic equation for the interior grid 
point with master index  is

(EQ 30)

The resulting matrix for this problem is highly structured, but now in addition to the non-
zero elements on the diagonals immediately above (N) and immediately below (S) the 
principal diagonal, we have two additional non-zero diagonals for the (E) and (W) points 
that are offset  diagonals from the principal diagonal (see figure below). This matrix is 
said to be banded, since the only non-zero elements occur within diagonals offset by a few 
(compared to ) diagonals from the main one.  As in the case of a tridiagonal matrix, 
great savings in CPU time can be achieved by recogonizing the fact during Gaussian elim-
ination that all elements located on diagonals offset by more than  positions from the 
principal diagonal are guaranteed to be zero. For brute-force Gaussian elimination, the 

number of FLOP’s required to solve the problem is approximately . If 
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FLOP’s! By taking into account the banded structure, however, this calculation can be per-
formed many orders of magnitude faster.

FIGURE 7. Structure of non-zero elements in banded matrix from a 2-D finite difference problem

Your assignment is the following :

A. For this problem, calculate the total number of FLOP’s required to perform the row 
operations of Gaussian elimination, if we take into account the banded structure of the 
matrix.

B. When solving problems in MATLAB, we can use the built-in Gaussian elimination 
solver with the sparse matrix notation system to take advantage of such structure without 
explicitly writing a new Gaussian elimination routine.

We can store compactly in memory any matrix that is sparse (i.e. that is mostly filled with 
zeros) by allocating for each non-zero element three spaces (two integers and a floating 
point real number) in memory to record

1. the row number of the non-zero element

2. the column number of the non-zero element

3. the non-zero value of the element

In MATLAB, one can very easily use this sparse-matrix format after learning a few simple 
commands. The following MATLAB code generates a sparse-matrix representation of the 
matrix from problem 2 of this homework assignment.

% first, allocate memory

num_nz = 3*N;  % upper bound of number of non-zero elements

A = spalloc(N,N,num_nz);  % allocate space in memory
September 13, 2002 11



% set non-zero elements in first row

A(1,1) = -2;

A(1,2) = 1;

% set non-zero elements in last row

A(N,N-1) = 1;

A(N,N) = -2;

% set non-zero elements in “interior” rows

for j=2:(N-1)

     A(j,j-1) = 1;

     A(j,j) = -2;

     A(j,j+1) = 1;

end

spy(A);  make plot to show structure of non-zero elements

Then, using the MATLAB commands, we can solve problem 2 by entering the commands,

% set right-hand side vector from known value of G

b = G*ones(N,1);  

b(N) = b(N) - Vup;

% call built-in MATLAB ellimination solver

v = A\b;

Here, when the elimination solver is called with a matrix stored in the sparse matrix for-
mat, the routine attempts to perform row and column interchanges to make the matrix as 
tightly banded as possible, and then applies Gaussian elimination. You get the memory 
and CPU time advantage of a specially-written banded matrix solver, with much less 
effort.

For this problem, write a MATLAB program to solve for the velocity profile using the 
sparse matrix format and the built-in elimination solver. For the following values of the 
parameters, make a filled countour plot (see command contourf) of the velocity profile.

                        (EQ 31)

Consult the on-line MATLAB help utilities (helpdesk, helpwin) for further details about 
these commands. Submit the MATLAB source code and the output plot.
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