
Fall 2002. 10.34. Numerical Methods Applied to Chemical Engineering

Homework # 2. Nonlinear algebraic equations

Assigned Friday 9/13/02. Due Wednesday 9/25/02

Problem 1. Tank-draining problem

Let us consider the system below, in which a cylindrical tank of diameter  is drained 
by a cylindrical pipe of length  and diameter . The fluid in the tank is water, and the 
tank is exposed to standard atmospheric conditions.

FIGURE 1. Geometry for tank draining problem

To calculate the resistance to flow of the pipe, use the relation from fluid mechanics that 
the change in dynamic pressure  across a pipe of length  and diameter  for 
flow with a mean velocity  is

(EQ 1)

The Darcy friction factor  is related to the Reynolds’ number in laminar flow by

(EQ 2)
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and in turbulent flow is related to the Reynolds’ number and the surface roughness  by 
the Colebrook equation,

(EQ 3)

Our pipe is assumed to be commercial steel, for which the effective surface roughness  is 
0.045 mm.

You may neglect viscous effects within the bulk of the tank, but include the minor loss due 
to entrance flow into the pipe,

(EQ 4)

Question 1.A. Plot the volumetric flow rate out of the tank as a function of . The 
diameter of the tank is 2.5 m, the diameter of the drain pipe is 5 cm, and the length of the 
drain pipe is 2 m.

Question 1.B. From the results of 1.A, starting with an initial depth of water in the 
tank of 2 m, plot as a function of time the height of water in the tank until it empties.

Hint: Try rearranging the equation .
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Problem 2. Modeling steady-state behavior of a Nylon reaction system

Background

This question considers the application of numerical methods for solving nonlinear alge-
braic equations to the study of a continuous process for the polymerization of Nylon. The 
problem statement gives a sufficient description of polycondensation kinetics to answer 
the questions; however, a more general formulation of a polycondensation kinetic model 
may be found in Beers and Ray, J. Appl. Polym. Sci., v 79, 246-265, 2001.

The most common form of Nylon, Nylon-6,6, is made by polycondensation of the two 
monomers hexamethylene diamine (HMD) and adipic acid (ADA). The general reaction 
for the formation of polymer from the diamine and diacid monomers is

(EQ 5)

The  symbol denotes that this reaction is reversible, and is driven to the right by the 
removal, through evaporation, of the water coproduct. Here, we show  moles of diacid 
monomer and  moles of diamine producing a polymer that contains (on average)  num-
ber of repeat units (the quantity within the brackets that is comprised of one monomer unit 
each of diacid and diamine). Such a polymer contains  monomer units, and is said to 
have a chain length of , or to be a -mer.

Because water is produced as a condensate (i.e. a volatile species that evaporates and is 
recovered through condensation), the method used to synthesize Nylon-6,6 is known as 
condensation polymerization, although a name that better describes the nature of the pro-
cess is stepwise polymerization. In this approach, we build up high molecular weight poly-
mer step-by-step, where the first step is the combination of two monomer units to form a 
dimer according to the reaction,

(EQ 6)

The double-sided arrow denotes that this reaction is reversible, with an equilibrium con-
stant on the order of 100. The mechanism of this reaction under acid catalysis is shown in 
the figure below. The acid catalyst may be either supplied externally (e.g. ) or the reac-
tion may be self-catalyzed by the carboxylic acid end groups. The equilibrium constant of 
this reaction is on the order of 100 because in the amide linkage, - -, the less-elec-
tronegative nitrogen is able to donate some electron density to the electron-deficient car-
bon of the carbonyl group.

The dimer produced by this reaction still has functional groups on both ends, and so may 
react further to produce even larger molecules. Condensation among larger molecules 
occurs through the same mechanism as that shown below for monomers, and the reactivity 
of an end group (-  or - ) is essentially independent of the size of the molecule to 
which it is attached.

n HOOC CH2( )
4
COOH n H2N CH2( )

6
NH2+ HO OC CH2( )

4
CONH CH2( )

6
NH[ ]

n
H 2n 1–( ) H2O+⇔

⇔
n

n n

2n

2n 2n

HOOC CH2( )
4
COOH H2N CH2( )

6
NH2+ HOOC CH2( )

4
CONH CH2( )

6
NH2 H2O+⇔

HCl

CONH

COOH NH2
September 24, 2002 3



 

FIGURE 2. Acid-catalyzed condensation among diamine and diacid monomers

To simplify our description, we use the following short-hand notation to represent the 
reaction among monomers,

(EQ 7)

 refers to a polymer chain comprised of one monomer unit (i.e., a monomer), and  
refers to a chain comprised of two monomer units (a dimer).  represents a water conden-
sate molecule. Because the dimer itself has acid and base groups on both ends, it may react 
with other monomers, dimers, trimers, etc., to produce larger molecules. The hierarchy of 
additional reactions that occur during polymerization is

and so on, or in general for ,

(EQ 8)

In the forward direction, the condensation reaction takes the form

(EQ 9)
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Because the reaction may be catalyzed by either an added, “external” acid or be self-cata-
lyzed by the carboxylic acid end groups, the rate constant is written as

 (EQ 10)

 is the total concentration of acid end groups. Since each chain contains on average one 
acid group and one base group, at a given conversion, the total concentration of chains of 
any length is equal to the concentration of unreacted acid (base) end groups,

(EQ 11)

Here we have assumed that the concentrations of acid and base end groups are equal 
throughout the course of the polymerization. If their initial concentrations are equal and 
there is no significant loss of either monomer to side-reactions or evaporation, the stoichi-
ometry of the reaction will retain the equimolar balance.

The net rate of change of the m-mer concentration due to the forward-direction condensa-
tion reaction among all species is

(EQ 12)

The first term is the rate of disappearance of m-mer from reaction with all other species, 
and the second term is the rate of m-mer creation through the reaction of two smaller spe-
cies. The factor of 2 in the first term refers to the fact that two modes of addition (at the 
acid and base ends of the m-mer) both deplete m-mer. 

The rates of change of the concentrations of amide linkages , water condensate , 
acid end groups , and base end groups  are easy to calculate,

(EQ 13)

In the reverse direction, the condensation reaction becomes

(EQ 14)

with a reverse rate constant,

(EQ 15)
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 is the equilibrium constant of the reaction, and for Nylon is on the order of 100. This 
equilibrium constant relates at equilibrium the concentrations of the active end groups, the 
linkages, and the condensate.

(EQ 16)

If we assume that the concentrations of acid and base groups are equal throughout the 
polymerization, we can define a fractional conversion  of the end groups as

(EQ 17)

 is the initial concentration of acid groups before reaction. If  is the initial concen-

tration of monomers (both diacid and diamine), then since each pair of monomers (one 
diacid and one diamine) contains two acid groups and two base groups, the initial acid and 
base group concentrations are

(EQ 18)

and the concentration of acid groups at a conversion  is

(EQ 19)

At complete conversion, each pair of diamine and diacid monomer units contribute two 
amide linkages. Therefore, the linkage concentration at a conversion  is

(EQ 20)

The equilibrium constant, written in terms of the conversion at equilibrium, is therefore

(EQ 21)

If no water is removed from the reaction medium, , and the conversion at equi-

librium becomes

(EQ 22)

The rates of change of the linkage, end group, and condensate concentrations from the 
reverse reaction are

(EQ 23)
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The net rate of change of m-mer concentration due to the reverse reaction is

(EQ 24)

The first term is the rate of production of m-mer through the scission of larger molecules, 
and the second term is the rate at which m-mer disappears itself when one of its linkages is 
attacked by water. Since a larger chain can be split in two places to produce a m-mer, the 
first term carries a factor of 2. Since a m-mer has  linkages, the second term carries 
a factor of .

Using these two expressions, we can calculate the time evolution of the chain length distri-
bution during a batch polymerization by integrating the following set of ordinary differen-
tial equations. Since this is an infinite set of equations, we specify a cutoff chain length, 

, and assume that  for .

(EQ 25)

In a continuous stirred tank reactor (CSTR), such as those shown in the process diagram 
below, these rate equations are replaced by the following mass balance on each species, 
including the fluxes from the inlet and outlet flows. 

(EQ 26)

Dividing by the flow rate through the reactor yields at steady state the following set of 
nonlinear algebraic equations for the concentrations of each chain length,

(EQ 27)

  is the residence time of the reactor.

We need also an algebraic equation for the concentration of water in the reaction medium 
within the CSTR. We assume that each reactor is purged with nitrogen, but that the 
removal of water is mass-transfer limited. The mass balance for the concentration of water 
becomes,

(EQ 28)
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(EQ 29)

At steady state, the balance on water becomes

(EQ 30)

In this problem, we will use various approaches to calculate the properties of the polymer 
produced in each reactor of the three CSTR system diagrammed below.

FIGURE 3. Diagram of 3 CSTR process for the production of moderate molecular weight Nylon

PART 2.A. Plots of chain length distribution from batch reaction

Before computing the properties of the polymer produced in the continuos process, we 
first employ a simple statistical model (developed by Paul Flory, the Nobel laureate chem-
ist who laid much of the foundation of modern polymer science) to calculate the concen-
trations of each chain length as a function of conversion in a batch reaction. Again, we 
assume that at all times, the concentrations of acid and base end groups are equal. We now 
use statistical arguments to reconstruct the chain length distribution (the concentrations of 
each chain length) from the conversion and the initial monomer concentration. 

Let us say that we select, at random, a chain end with an unreacted acid end group and ask 
the question - what is the length of chain that is attached to this end? At a conversion of , 
the probability that the chain is terminated with only one monomer unit is  and the 
probability that the other end group of the terminal monomer unit is attached to another 
unit (so that the chain length is at least two) is . Let us assume the latter case, and then 
ask - what is the probability that the second monomer unit is also attached to something 
else? Again, the probability that the second monomer unit is attached to another, third 
monomer unit is , so that the total probability that a randomly-chosen end is attached to a 
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chain of length 3 or greater is . We can extend this process to calculate that the probabil-
ity that a randomly chosen chain end is attached to a chain comprised of at least  

monomer units is . At this point, we see that if the next acid group considered remains 
unreacted, we will have a chain with a total of  monomer units, so that the probability 
that a randomly chosen acid end group is attached to a chain of exactly  monomer units is 

. The concentration of polymer chains of length  is therefore

(EQ 31)

Relating  to the initial monomer concentration yields the Flory chain length distribu-
tion,

(EQ 32)

Question 2.A.1., using this statistical model, plot the chain length distributions at con-
versions of 25%, 50%, 75%, 90%, 92.5%, 95%, 97.5%, 99%, 99.5%, 99.75%, and 
99.9%.

Often we do not need to know the entire chain length distribution, but only wish to know 
the average size of the polymer chains and some measure of the breadth of the chain 
length distribution. We can characterize the average size of the molecules and the breadth 
of the distribution by calculating a few moments of the chain length distribution. We 

define the  moment of the chain length distribution, , as

(EQ 33)

Of particular interest are the three leading moments, the zeroth moment (the total number 
per unit volume of polymer chains)

(EQ 34)

the first moment (the total “mass” per unit volume of polymer chains)

(EQ 35)
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(EQ 36)

From these three values, we can calculate the number-averaged chain length, 
, and the weight-averaged chain length, . Since the weight-

averaged chain length biases more the contributions of the larger chains, , with the 

equality holding only if all chains are of the same length. The ratio of these two averages, 
 (the polydispersity), provides a simple measure of the breadth of the chain 

length distribution. The larger the polydispersity, the greater is the disparity in the lengths 
(molecular weights) of individual chains. A polydispersity value of one means that all of 
the polymer chains are of the same length. A large polydispersity means that there are sig-
nificant numbers of both “small” and “large” chains.

From knowledge of the moments of the chain length distribution, we can also obtain the 
concentrations of end groups and linkages,

(EQ 37)

Question 2.A.2, use your results from 2.A.1 to plot, as functions of the conversion, the 
number and weight average chain lengths and the polydispersity. Make sure that you 
consider high-enough chain lengths in your summation that the weight-averaged 
chain length and polydispersity converge closely to their true values.

Note that we can calculate directly the number-average chain length since each polymer 
chain has, on average one acid end group.

(EQ 38)

Question 2.A.3. From your results in 2.A.2, propose the corresponding formulas for 
 and .

Part 2.B. Modeling the continuous polymerization process

In this section, we compute the properties of the polymer in each of the reactors in the 3-
CSTR process shown above. To do so, we derive “mass” balances on each of the three 
leading moments of the chain length distribution that will allow us to compute the number 
and weight average molecular weights of polymer in each reactor. We take the mass bal-
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ance for each species , multiply it by , and sum over all  to obtain the following 
“balance” for ,

(EQ 39)

which, after division by the reactor volume, yields,

(EQ 40)

At steady state, we obtain a nonlinear algebraic equation by setting the time derivative to 

zero. In these equations,  is the rate of change, due to reaction, of the  moment of the 

chain length distribution. It is computed directly from the rates of change of each species,

(EQ 41)

After some math, we obtain the following rates of change of the three leading moments 
due to forward and reverse condensation.

(EQ 42)

(EQ 43)

(EQ 44)

We see that the equation for the second moment calls for the value of the third moment; 
however, we have not derived an equation for this moment. To “close” the set of equa-
tions, we use an approximation for the third moment based on assuming a certain mathe-
matical form of the chain length distribution that is fitted to the values of , , and . 
We then use the computed third moment of this approximate distribution as the estimate of 
the third moment in our system. This yields the following closure approximation, the use 
of which is found to introduce very little error,

(EQ 45)

Since we can calculate the value of  directly from the values of , , and , this equa-
tion is called an auxiliary equation and is not added to the system of nonlinear algebraic 
equations.
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Question 2.B.1. Write a MATLAB program that computes , , , and  for each 
reactor in the 3 CSTR process shown in the diagram above. 

The program should set the values of the constant first moment , the equilibrium con-
stant , and the value of the Dämkohler number for the first reactor. The Dämkohler 

number is defined as the dimensionless ratio of the reactor residence time divided by the 
characteristic time of the reaction, and for this system takes the form,

(EQ 46)

 is the value of the zeroth moment in the reactor inlet stream. We specify the value 

 of the Dämkohler number for the first reactor only, and assume that all subsequent 

reactors have the same mean residence time . Therefore, if  is the zeroth moment of 
the chain length distribution to reactor # j, the value of  for this reactor is

(EQ 47)

The program should ask the user to input one of more values of the cluster of parameters 
.  is the mass transfer coefficient for the removal of water from the reaction 

medium to the gas phase,  is the mass transfer area per unit volume of the reaction 
medium, and  is the residence time of the reactor. The larger is the value of , the 
greater is the mass transfer rate relative to the flow through the reactor. When the value of 

 is very small, the reaction medium passes through the reactor so quickly that 
there is insufficient time for the water to be removed to the purge stream. 

For each of the input values of , the program should compute the values of , 
, , and  in each reactor. 

While in practice the reaction is self-catalyzed, assume in this example that an external 
catalyst has been added so that the rate constant is independent of the acid end group con-
centration.

Question 2.B.2. Using a Dämkohler number of 50 for the first CSTR, plot as func-
tions of  the number-averaged and weight-averaged chain lengths, the poly-
dispersities, and the conversions in the product streams from each reactor. 

Explain why one observes limiting values of the chain lengths as  and 
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Why is the polydispersity greater for large mass transfer rates than would be 
expected for a batch polymerization, where the chain length distribution follows the 
Flory statistical model?

Why does the polydispersity decrease as the mass transfer rate decreases?

In actuality, the polydispersity never becomes as large as this model suggests, even when 
the mass transfer rate is infinitely fast. The reason is that there are additional reactions, 
known as interchange reactions, in which the end groups react with a linkage in another 
molecule to “trade” parts of their chains. Since larger molecules contain more linkages, 
they are more likely to lose part of their chain to another molecule. This has the effect of 
narrowing the chain length distribution, but since the total number of chains remains con-
stant during interchange, the number-averaged chain length is not affected. When the 
interchange reactions occur infinitely fast, one observes the same Flory chain length distri-
bution computed above from statistical arguments.

HINTS: 

1. When working with nonlinear equations, it is often difficult to converge to a solution 
when you do not know a priori what to use for an initial guess. In this case, a useful tool is 
homotopy, in which one varies the system parameters to obtain a limiting case with an eas-
ily-determined solution. You can use the expected solution in this limit as an initial guess, 
and then vary the system parameters slowly to move towards the solution for the parame-
ter values of interest. The key idea is that for each step, you are only modifying the param-
eters by a small amount so that your initial guess should be close to the solution.  If you 
find you have difficulties getting the nonlinear equation solver fsolve() in MATLAB to 
converge, you might consider this approach.

2. It is also helpful to validate your program by performing a simulation for which you 
know the answer. In this problem, we know that if the Daemkohler number is very large 
and no water is removed, the conversion from the final product stream should be that 
expected at equilibrium. Also, we know that if the residence time is very small, there is lit-
tle time for reaction to occur, and the outlet concentrations should be nearly equal to the 
inlet concentrations.

3. Note that the outlet from reactor 1 is the inlet to reactor 2, and reactor 2 output flows 
into reactor 3 as input. How can you use this observation to make the solution process eas-
ier and more robust?

4. On the 10.34 website, I include a problem SS_CSTR_2_rxn_scan_Q.m, that shows how 
to solve sets of nonlinear algebraic equations with the MATLAB built-in (as part of the 
optimization toolkit) nonlinear equation solver fsolve().
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