
Fall 2002. 10.34. Numerical Methods Applied to Chemical Engineering 
 

Homework # 2. Nonlinear algebraic equations 
 

Solution set 
 
Problem 1. Tank-draining problem 
 
Question 1.A. Plot the volumetric flow rate out of the tank as a function of h. 
 
First we pick the bottom of pipe as a reference height (any height can be chosen but this 
is most convenient)  Now using that reference height,  we specify the total pressure on 
the surface of the water and at the exit of the pipe 
 
Pttop = Patm +½ �V2

top + �g(h+L) 
Ptexit = Patm +½ �V2   
 
Where Vtop= V(Apipe/Atop)=V((¼�D2)/(¼�D2

top))=V(D/Dtop)2=(0.05[m]/2.5[m])2=4*10-

4V 
 
We use Bernoulli’s equation to relate Pttop and Ptexit remembering to account for losses in 
total pressure. (Bernoulli’s equation can be thought of as a mechanical energy balance.  
The word mechanical is used to distinguish it from the thermal energy balance used for 
compressible flows.) 
 
Ptexit = Pttop – losses 
Patm +½ �V2  = Patm + ½ �V2

top + �g(h+L) – losses 
½ �V2  = ½ �V2

top + �g(h+L) - losses 
 
But what are the losses? 
lossentrance = ¼�V2  
losspipe = fD(L/D)(½ �V2) 
 
½ �V2  = ½ �V2

top + �g(h+L) -¼�V2 - fD(L/D)(½ �V2) 
 
Since there are 2 equations (laminar and turbulent flow) for the Darcy friction factor, fD, 
we need to check if the laminar flow formulation, fD = 64/Re, will be used.  A “best case” 
scenario (if it’s not used then, it never will be) is when the water height, h, in the tank is 
infinitesimal. (This implies that the entrance loss and that Vtop=4*10-4V still apply).   
 
We assume that the flow is laminar and that �=�/�=10-6 [m2/s] (kinematic viscosity for 
water at 20o C). The pipe diameter D=0.05 [m] so the Reynolds number is Re= �VD/� = 
VD/� =5*104 V.  The laminar Darcy friction factor is then fD = 64/Re = 0.00128/V 
(where V is in [m/s]).  The pipe length, L=2 [m].  Acceleration due to gravity is g=9.8065 
[m/s2] 
 



½ �V2  = ½ �(4*10-4 V)2 + �gL -¼�V2 - fD(L/D)(½ �V2) 
1.49999984 V2 = 2gL - fD(L/D)V2 
1.49999984 V2 = 39.226 –0.0512 V 
V=4.1583 [m/s] 
 
For laminar flow, Re < 2100 or V < 2100/(5*104 ) = 0.042 [m/s].  Since the best case V is 
much greater than this, the flow will always turbulent.   



The 2 equations that need to be solved are then 
 
½ �V2  = 8*10-8 �V2 + �g(h+L) -¼�V2 - fD(L/D)(½ �V2) 
 
fD

-0.5 = -2 log10 [e/D/3.7 + 2.51/(Re fD
0.5)]  

 
In the first equation, � can be eliminated and V can be solved for in terms of fD.  The 
resulting expression for V can be substituted into the 2nd equation.  Alternatively the 2 
equations can be simultaneously solved using the matlab function fsolve or some other 
means.   
 
As previously stated, the diameter of the tank is 2.5 m, hence the volumetric flow rate is 
approximately 4.91 times the derivative of the water height with respect to time, which is 
plotted below. 

 
 
 
Question 1.B. From the results o 1.A, starting with an initial depth of water in the 
tank of 2 m, plot as a function of time the height of water in the tank until it empties. 
 

 
 
 



The following matlab code was written by Professor Beers as a solution to this problem. 
 
% plot_dh_dt_tank_drain_v2.m 
% 
% This MATLAB m-file makes a plot of dh/dt vs. h 
% for the tank draining problem, and plots the 
% tank height as a function of time. 
% K. Beers. MIT ChE. 9/19/02 
 
function iflag_main = plot_dh_dt_tank_drain_v2(); 
 
iflag_main = 0; 
 
% set problem parameters 
Param.Dt = 2.5;  % tank diameter in m 
Param.Dp = 5e-2;  % pipe diameter in m 
Param.L = 2;  % drain pipe length in m 
Param.density = 1000; % water density in Kg/m^3 
Param.viscosity = 1e-3;  % water viscosity in Pa*s 
Param.e = 4.5e-5;  % effective surface roughness of pipe (m) 
Param.e_D = Param.e/Param.Dp;  % relative surface roughness 
Param.g = 9.8; % gravity acceleration (m/s^2) 
Param.K_L = 0.5;  % entrance loss coefficient 
 
% Set maximum tank height (m) 
h_max = 2; 
 
% set minimum tank height (m) 
h_min = 0.01; 
 
% set interval in height values (m) 
dh = 0.02; 
 
% Set grid of tank height values 
h_grid = [h_min : dh : h_max]; 
num_h = length(h_grid); 
 
% Allocate vector to store output values 
dh_dt_grid = zeros(size(h_grid)); 
Q_grid = zeros(size(h_grid)); 
V_grid = zeros(size(h_grid)); 
Re_grid = zeros(size(h_grid)); 
fd_grid = zeros(size(h_grid)); 
 
% Use initial guess of infinite Re limit 
% for commercial steel pipe. 



fd_guess = 0.02; 
 
% Call solver to compute results for each h value. 
verbose = 0; 
for k = num_h : -1 : 1 
    [dh_dt_grid(k),Q_grid(k),... 
     V_grid(k),Re_grid(k),fd_grid(k)] = ... 
        tank_drain(h_grid(k),fd_guess,Param,verbose); 
    % store friction factor as guess for next 
    % iteration 
    fd_guess = fd_grid(k); 
end 
 
% Now, estimate times at which tank reaches each height 
time = zeros(size(h_grid)); 
for k = (num_h-1) : -1 : 1 
    dt = (h_grid(k)-h_grid(k+1))/dh_dt_grid(k+1); 
    time(k) = time(k+1) + dt; 
end 
 
% Make plots of results 
figure; 
% tank height rate of change 
subplot(2,1,1); 
plot(h_grid,dh_dt_grid); 
xlabel('h (m)'); 
ylabel('dh/dt (m/s)'); 
% tank height vs. time 
subplot(2,1,2); 
plot(time,h_grid); 
xlabel('t (s)'); 
ylabel('h (m)'); 
gtext('Tank draining problem'); 
 
% new figure for other results 
figure; 
% Velocity in drain pipe 
subplot(2,2,1); 
plot(h_grid,V_grid); 
xlabel('h (m)'); 
ylabel('V (m/s)'); 
% volumetric flow rate 
subplot(2,2,2); 
plot(h_grid,Q_grid); 
xlabel('h (m)'); 
ylabel('Q (m^3/s)'); 



% Reynolds' number in drain pipe 
subplot(2,2,3); 
semilogy(h_grid,Re_grid); 
xlabel('h (m)'); 
ylabel('Re'); 
% friction factor 
subplot(2,2,4); 
plot(h_grid,fd_grid); 
xlabel('h (m)'); 
ylabel('f_D'); 
gtext('Tank draining problem'); 
 
 
iflag_main = 1; 
return; 
 
 
 
% ============================================== 
% tank_drain.m 
% 
% This MATLAB program calculates the velocity 
% through the exit pipe for a tank-draining 
% problem at a specified value of the height 
% of water in the tank. 
% 
% K. Beers 
% MIT ChE. 9/18/02 
% v 2. 9/19/02 
 
function [dh_dt,Q,V,Re,fd,iflag_main] = ... 
    tank_drain(h,fd_guess,Param,verbose); 
 
iflag_main = 0; 
 
if(~exist('verbose')) 
    verbose = 0; 
end 
 
Param.h = h;  % tank height in m - INPUT VALUE 
 
 
% For this initial guess of the friction factor, we calculate 
% the corresponding value of the velocity from the macroscopic 
% energy balances. 
V_guess = tank_drain_calc_V(fd_guess,Param); 



Re_guess = Param.density*V_guess*Param.Dp/Param.viscosity; 
if(verbose) 
    disp(['Guess fd = ', num2str(fd_guess)]); 
    disp(['Guess velocity = ', num2str(V_guess)]); 
    disp(['Guess Reynolds'' number = ', num2str(Re_guess)]); 
end 
 
% Now, with this initial guess of the friction factor, 
% we use the MATLAB command fzero to solve the resulting 
% nonlinear algebraic equation for fd. 
options = optimset('Display','off'); 
if(verbose) 
    options = optimset('Display','iter'); 
end 
     
[fd,fval,exitflag,output] = fzero(@tank_drain_calc_f, ... 
    fd_guess,options,Param); 
 
% From the final value of the friction factor, we calculate 
% the velocity through the pipe. 
V = tank_drain_calc_V(fd,Param); 
% the Reynolds' number 
Re = Param.density*V*Param.Dp/Param.viscosity; 
% the volumetric flow rate through the drain pipe (m^3/2) 
Q = pi/4*Param.Dp^2*V; 
% the rate of change of the height of the tank (m/s) 
dh_dt = -Q/(pi/4*Param.Dt^2); 
 
if(verbose) 
    disp(['Darcy friction factor = ', num2str(fd)]); 
    disp(['Drain pipe velocity (m/s) = ', num2str(V)]); 
    disp(['Pipe Reynolds'' number = ', num2str(Re)]); 
    disp(['Volumetric flow rate (m^3/s) = ', num2str(Q)]); 
    disp(['Rate of change of height (m/s) = ', num2str(dh_dt)]); 
end 
     
 
iflag_main = 1; 
 
return; 
 
 
 
% =========================================================== 
% This MATLAB function calculates the velocity through the 
% drain pipe as a function of the Darcy friction factor. 



% K. Beers. MIT ChE. 9/18/02 
function V = tank_drain_calc_V(fd,Param); 
 
var1 = 1 - (Param.Dp/Param.Dt)^4 + Param.K_L + ... 
    fd*Param.L/Param.Dp; 
 
V = sqrt(2*Param.g*(Param.h+Param.L)/var1); 
 
return; 
 
 
 
 
% ========================================================== 
% This MATLAB function calculates the function values 
% that goes to zero when the value of the Darcy 
% friction factor satisfies the problem. 
% K. Beers. MIT ChE. 9/18/02 
% v. 2. 9/20/02 
function fval = tank_drain_calc_f(x,Param); 
 
fd = x; 
 
% For this value of the friction factor, calculate 
% the corresponding velocity from the balance 
% equations. 
V = tank_drain_calc_V(fd,Param); 
 
% From this velocity, calculate the Reynolds' number 
% in the pipe. 
Re = Param.density*V*Param.Dp/Param.viscosity; 
 
 
% If Re < 2100, laminar flow 
if(Re < 2100) 
    fval = fd - 64/Re; 
     
% else for turbulent flow, use Colebrook equation 
else 
    var1 = Param.e_D/3.7 + 2.51/Re/sqrt(fd); 
    fval = 1/sqrt(fd) + 2*log10(var1);     
end 
 
return; 
 
Problem 2. Modeling steady-state behavior of a Nylon reaction system. 



 
Question 2.A.1, using this statistical model, plot the chain length distributions at 
conversions of 25%, 50%, 75%, 90%, 92.5%, 95%, 97.5%, 99%, 99.5%, 99.75%, 
and 99%  
 
“this statistical model” refers to equation 32 from the assignment sheet  (reprinted here).   
 

 

 
 



 
 
 



 



The following matlab code generated the above chain length distributions plot. 
 
 
close all; 
clear 
%conversion 
p=[.25 .50 .75 .90 .925 .95 .975 .99 .995 .9975 .999]'; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Question 2.A.1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
for i=1:length(p) 
  if(any(i==[1 4 8])) %3 plots on 1st page 4 on next 2 
    fig=figure; 
    position=get(fig,'Position');            %on screen window size 
    position(2)=position(2)-2/3*position(4); %lower window bottom 
    position(4)=position(4)*5/3;             %increase window height 
    set(fig,'PaperPosition',[0.25 0.5 8 10],'Position',position) 
  end   
  subplot(4,1,mod(i,4)+1); 
  xn=1/(1-p(i))*[1 1]; 
  xw=(1+p(i))/(1-p(i))*[1 1]; 
  xmax=2*max(xn(1),xw(1)); 
  x=floor([0:xmax/64:xmax])'; 
  P=p(i).^x.*(1-p(i)).^2; 
  y=[min(P) max(P)]; 
  plot(x,P,'-b',xn,y,'-r',xw,y,'-r'); 
  ytext=y*[.20; .8]; 
  text(xn(1),ytext,'x_n'); %label xn line 
  text(xw(1),ytext,'x_w'); %label xw line 
  text(5/8*xmax,ytext,sprintf('conversion p=%g',p(i))); %list conversion 
  if(any(i==[1 4 8])) 
    title('Question 2.A.1'); 
  end  
  xlabel('chain length x'); 
  ylabel('[P_x]/[P_1]_0'); 
  grid on; 
  axis tight; 
  %automatically print to jpeg files 
  if(any(i==[3 7 11])) 
     eval(sprintf('print -djpeg p2A1_%g.jpg',fig)); 
  end 
end 
 
 



 
 
 
 
Question 2.A.2, use your results from 2.A.1 to plot, as functions of the conversion, 
the number and weight average chain lengths and the polydispersity.  Make sure 
that you consider high-enough chain lengths in your summation that the weight-
average chain length and polydispersity converge closely to their true values.  
 
The simplified equations used to calculate xn, xw, and Z are derived in a straight-forward 
manner: 
 

 
These equations are plotted below with infinity approximated as 10000. 
 

 



 
 
 
 
 



The matlab code used to generate these plots follows: 
 
p=[.25 .50 .75 .90 .925 .95 .975 .99 .995 .9975 .999]'; %conversion 
m=1:10000; 
xn=zeros(size(p)); 
xw=xn; 
for i=1:length(p) 
  xn(i)=sum(m.*p(i).^(m-1))/sum(p(i).^(m-1)); 
  xw(i)=sum(m.^2.*p(i).^(m-1))/sum(m.*p(i).^(m-1)); 
end 
z=xw./xn; 
figure; 
subplot(3,1,1); plot(p,xn); ylabel('x_n'); axis tight; grid on;  
title('Question 2.A.2') 
subplot(3,1,2); plot(p,xw); ylabel('x_w'); axis tight; grid on; 
subplot(3,1,3); plot(p,z); ylabel('Z'); axis tight; grid on;  
xlabel('conversion: p') 
 
Question 2.A.3.  From your results in 2.A.2, propose the corresponding formulas for 
xw and Z. 
 
xn, xw, and Z are expressed without an infinite series as:   

 
 

 
This pattern of Z =1+p is readily observable from the previous plots.  As “proof”, plots 
identical to those found in part 2.A.2 were generated from these functions of conversion. 



 
 
The code that generated these plots follows. 
 
p=[.25 .50 .75 .90 .925 .95 .975 .99 .995 .9975 .999]'; %conversion 
Xn=1./(1-p); 
Xw=2*Xn-1; 
Z=p+1; 
 
figure; 
subplot(3,1,1); plot(p,Xn); ylabel('x_n=1/(1-p)'); axis tight; grid on;  
title('Question 2.A.3') 
subplot(3,1,2); plot(p,Xw); ylabel('x_w=(1+p)/(1-p)'); axis tight; grid on; 
subplot(3,1,3); plot(p,Z); ylabel('Z=1+p'); axis tight; grid on;  
xlabel('conversion: p') 



Part 2.B. Modeling the continuous polymerization process. 
 
Question 2.B.1 Write a MATLAB program that computes p, xn, xw, and Z for each 
reactor in the 3 CSTR process shown in the diagram above. (diagram not included 
in solution set) 
 
While coding style varies the equations central to solving this program are not.  Their 
derivation is as follows.  The rate reactions for �0, �2, and W are: 

 
k(fc) needs to be replaced in all three rate equations.  A, B, and L also need to be replaced 
in the rate equation for water production.   

 
These rates are then substituted into “mass balance” equations.  Derivatives with respect 
to time are set to zero because a steady state reaction is being modeled. 

 



The resulting equations (the ones to be used in the matlab program) are: 

 
The matlab code written by Professor Beers as a solution for this problem follows: 
 
% Nylon_polycond.m 
% 
% This MATLAB program calculates the conversions and 
% averaged chain lengths of Nylon polymer produced 
% in a 3 CSTR process.  Moment equations with the 
% Schultz-Flory closure approximation for the 3rd 
 
% moment are used.  Equal balance between diamine 
% and diacid monomers is assumed. 
% 
% K. Beers. MIT ChE. 9/16/2002 
 
function [xn,xw,Z,p,iflag_main] = ... 
    Nylon_polycond(); 
 
iflag_main = 0; 
 
% First, set the simulation parameters. 
lambda_1 = 1;  % first moment of CLD 
 
% the monomer feed CLD moments 
% and water concentation 
lambda_0_feed = 1; 
lambda_2_feed = 1; 
W_feed = 0; 
 
% the equilibrium constant 
Keq = 100; 
 
% the reference Daemkohler number 
% of the first reactor.  The other 
% reactors are set to have the same 



% volume, so the Damkohler number 
% of a CSTR is equal to  
% Da_ref*lambda_0_in. 
Da_ref = 50; 
 
% the user is now prompted to input the 
% common (km*A/V)*tres - the product of the mass 
% transfer coefficient with the area/volume 
% and the residence time of the reactor. 
% If a column vector is input, the calculation 
% is repeated for each value of the 
kmApV_min = input('Input min. (k_m A / V)*t_res : '); 
kmApV_max = input('Input max. (k_m A / V)*t_res : '); 
num_kmApV = input('Input number of kmApV values : '); 
km_A_per_V_tres = logspace(log10(kmApV_min), ... 
    log10(kmApV_max), num_kmApV); 
 
% if 1, plots are to be made 
iplot = 1; 
 
% For each value of the mass transfer coefficient, 
% we repeat the calculation of the polymer properties 
% in each reactor.  First, we allocate space for 
% the results. 
 
% number-averaged chain lengths in each CSTR 
xn = zeros(num_kmApV,3); 
% weight-averaged chain lengths in each CSTR 
xw = zeros(num_kmApV,3); 
% polydispersities in each CSTR 
Z = zeros(num_kmApV,3); 
% conversions in each CSTR 
p = zeros(num_kmApV,3); 
 
% iterate over each mass transfer value 
for i_kmApV = 1:num_kmApV 
    kmApV_tres = km_A_per_V_tres(i_kmApV); 
     
    % use sequential approach to compute 
    % polymer properties in each reactor 
    lambda_0_in = lambda_0_feed; 
    lambda_2_in = lambda_2_feed; 
    W_in = W_feed; 
    for i_CSTR = 1:3 
        [lambda_0,lambda_2,W,iflag] = ... 
            polycond_CSTR_SS(lambda_0_in, ... 



                lambda_2_in, W_in, Da_ref, ... 
                kmApV_tres, Keq, lambda_1); 
        if(iflag >= 1)  % success 
            % record results 
            xn(i_kmApV,i_CSTR) = lambda_1/lambda_0; 
            xw(i_kmApV,i_CSTR) = lambda_2/lambda_1; 
            Z(i_kmApV,i_CSTR) = lambda_2*lambda_0/lambda_1^2; 
            p(i_kmApV,i_CSTR) = 1 - lambda_0/lambda_1; 
            % use as input to next CSTR 
            lambda_0_in = lambda_0; 
            lambda_2_in = lambda_2; 
            W_in = W; 
        else 
            error(['polycond_CSTR_SS: iflag = ', ... 
                    int2str(iflag)]); 
        end 
    end 
end 



% graph results 
if(iplot ~= 0) 
    figure; 
    % xn vs. kmApV 
    subplot(2,2,1); 
    semilogx(km_A_per_V_tres,xn(:,1)); 
    hold on; 
    semilogx(km_A_per_V_tres,xn(:,2),'-.'); 
    semilogx(km_A_per_V_tres,xn(:,3),':'); 
    axis([kmApV_min, kmApV_max, 1, 1.1*max(max(xn))]); 
    xlabel('(k_m A / V)\theta'); 
    ylabel('x_n'); 
    legend('1', '2', '3',2); 
    % xw vs. kmApV 
    subplot(2,2,2); 
    semilogx(km_A_per_V_tres,xw(:,1)); 
    hold on; 
    semilogx(km_A_per_V_tres,xw(:,2),'-.'); 
    semilogx(km_A_per_V_tres,xw(:,3),':'); 
    axis([kmApV_min, kmApV_max, 1, 1.1*max(max(xw))]); 
    xlabel('(k_m A / V)\theta'); 
    ylabel('x_w'); 
   % Z vs. kmApV 
    subplot(2,2,3); 
    semilogx(km_A_per_V_tres,Z(:,1)); 
    hold on; 
    semilogx(km_A_per_V_tres,Z(:,2),'-.'); 
    semilogx(km_A_per_V_tres,Z(:,3),':'); 
    axis([kmApV_min, kmApV_max, 1, 1.1*max(max(Z))]); 
    xlabel('(k_m A / V)\theta'); 
    ylabel('Z'); 
   % p vs. kmApV 
    subplot(2,2,4); 
    semilogx(km_A_per_V_tres,p(:,1)); 
    hold on; 
    semilogx(km_A_per_V_tres,p(:,2),'-.'); 
    semilogx(km_A_per_V_tres,p(:,3),':'); 
    axis([kmApV_min, kmApV_max, 0.9*min(min(p)), 1]); 
    xlabel('(k_m A / V)\theta'); 
    ylabel('p'); 
    gtext('3 CSTR Nylon polycondensation process'); 
end   
 
iflag_main = 1; 
 
return; 



 
 
% ========================================================= 
% This MATLAB routine computes the values of each moment 
% in a CSTR at steady state for a simple condensation system. 
% K. Beers. MIT ChE. 9/16/02 
 
function [lambda_0,lambda_2,W,iflag] = ... 
            polycond_CSTR_SS(lambda_0_in, ... 
                lambda_2_in, W_in, Da_ref, ... 
                kmApV_tres, Keq, lambda_1); 
 
iflag = 0; 
 
% First, make initial guesses for the 
% moments based on the inlet concentrations 
lambda_0_guess = lambda_0_in; 
lambda_2_guess = lambda_2_in; 
W_guess = W_in; 
% stack guesses into column vector 
x_guess = [lambda_0_guess; lambda_2_guess; W_guess]; 
 
% set Daemkohler number based on input concentration. 
% This has effect that all CSTR's are of the same 
% volume. 
Da = Da_ref * lambda_0_in; 
 
% Since this guess should be exact when the residence 
% time goes to zero, we use homotopy. 
num_homotopy = 10; 
for i_homotopy = 1:num_homotopy 
    kmApV_tres_work = ... 
        i_homotopy/num_homotopy * ... 
        kmApV_tres; 
    Da_work = ... 
        i_homotopy/num_homotopy * Da; 
     
    % call MATLAB fsolve() to solve system of equations 
    options = optimset('TolFun',1e-8,'LargeScale','off', ... 
        'Display','off'); 
    [x,fval,exitflag] = fsolve(@fun_polycond_CSTR_SS, ... 
        x_guess,options,lambda_0_in, lambda_2_in, W_in, ... 
        Da_work, kmApV_tres_work, Keq, lambda_1); 
    x_guess = x; 
     
end 



     
% assign output 
lambda_0 = x(1); 
lambda_2 = x(2); 
W = x(3);  
 
iflag = exitflag; 
 
return; 
 
 
% ========================================================= 
% This MATLAB routine computes the function values for the 
% governing equations of a polycondensation CSTR at steady 
% state. 
% K. Beers. MIT ChE. 9/16/02 
 
function [f,iflag] = ... 
            fun_polycond_CSTR_SS(x, ... 
                lambda_0_in, lambda_2_in, ... 
                W_in, Da, ... 
                kmApV_tres, Keq, lambda_1); 
iflag = 0; 
 
 
% unstack unknowns into real-life names 
lambda_0 = x(1); 
lambda_2 = x(2); 
W = x(3); 
 
% allocate vector for function values 
f = zeros(3,1); 
 
% compute third moment from closure approximation 
lambda_3 = lambda_2*(2*lambda_2*lambda_0 - lambda_1^2) ... 
    / (lambda_1*lambda_0); 
 
% balance for zeroth moment 
f(1) = lambda_0_in - lambda_0 + Da/lambda_0_in * ... 
    (-lambda_0^2 + W/Keq*(lambda_1-lambda_0)); 
 
% balance for zecond moment 
f(2) = lambda_2_in - lambda_2 + Da/lambda_0_in * ... 
    (2*lambda_1^2 + W/Keq/3*(lambda_1 - lambda_3)); 
 
% balance for water condensate 



f(3) = W_in - W - kmApV_tres*W + ... 
    Da/lambda_0_in * ... 
        (lambda_0^2 - W/Keq*(lambda_1-lambda_0)); 
 
return; 
 
 



Question 2.B.2. Using a Damkohler number of 50 for the first CSTR, plot as 
functions of (km A / V)� the number-averaged and weight-averaged chain lengths, 
the polydispersities, and the conversions in the product streams from each reactor. 
 

 
 
Explain why one observes limiting values of the chain lengths as (km A / V)�➜ 0 and 
(km A / V)�➜ �. 
 
(km A / V)� is a measure of the purge gas stream’s ability to take on and remove water.  
The lower limit levels out because essentially no water is being removed. The upper limit 
is set but the reactor residence time.  As the Damkohler number approaches infinity, the 
reaction rate approaches its equilibrium value.  The equilibrium constant of the reaction is 
defined to be Keq=[L]eq[W]eq/([A]eq[B]eq).  Using equation 37  (and noting that water is 
produced in proportion to the linkages) we get: Keq=(�1-�0)2/�0

2.  Hence 
xn=�1/�0=1+Keq

½, xw is similarly set by Keq. 
 
Why is the polydispersity greater for large mass transfer rates than would be 
expected for a batch polymerization, where the chain length distribution follows the 
Flory statistical model? 
 
As (km A / V)�➜ � the reverse reaction is increasingly penalized.  We get high 
polydispersity, Z, because of the residence time distribution.  Some chains take longer 



than others to pass through the reactor.  These chains have a chance to grow longer than 
those that pass through immediately.  This results in a Z > 2.  
 
Why does the polydispersity decrease as the mass transfer rate decreases? 
 
As (km A / V)�➜ 0  less or even no water is removed.  Longer chains have more linkages 
so they are a “bigger target” for reverse reactions, that is they are more likely to be 
broken up. This limits the polydispersity.  
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