
Fall 2002. 10.34. Numerical Methods Applied to Chemical Engineering

Homework # 2. Nonlinear algebraic equations

Solution set

Problem 1. Tank-draining problem

Question 1.A. Plot the volumetric flow rate out of the tank as a function of h.

First we pick the bottom of pipe as a reference height (any height can be chosen but this
is most convenient) Now using that reference height, we specify the total pressure on
the surface of the water and at the exit of the pipe

Pttop = Patm +½ �V2

top + �g(h+L)
Ptexit = Patm +½ �V2

Where Vtop= V(Apipe/Atop)=V((¼�D2)/(¼�D2

top))=V(D/Dtop)2=(0.05[m]/2.5[m])2=4*10-

4V

We use Bernoulli’s equation to relate Pttop and Ptexit remembering to account for losses in
total pressure. (Bernoulli’s equation can be thought of as a mechanical energy balance.
The word mechanical is used to distinguish it from the thermal energy balance used for
compressible flows.)

Ptexit = Pttop – losses
Patm +½ �V2 = Patm + ½ �V2

top + �g(h+L) – losses
½ �V2 = ½ �V2

top + �g(h+L) - losses

But what are the losses?
lossentrance = ¼�V2
losspipe = fD(L/D)(½ �V2)

½ �V2 = ½ �V2

top + �g(h+L) -¼�V2 - fD(L/D)(½ �V2)

Since there are 2 equations (laminar and turbulent flow) for the Darcy friction factor, fD,
we need to check if the laminar flow formulation, fD = 64/Re, will be used. A “best case”
scenario (if it’s not used then, it never will be) is when the water height, h, in the tank is
infinitesimal. (This implies that the entrance loss and that Vtop=4*10-4V still apply).

We assume that the flow is laminar and that �=�/�=10-6 [m2/s] (kinematic viscosity for
water at 20o C). The pipe diameter D=0.05 [m] so the Reynolds number is Re= �VD/� =
VD/� =5*104 V. The laminar Darcy friction factor is then fD = 64/Re = 0.00128/V
(where V is in [m/s]). The pipe length, L=2 [m]. Acceleration due to gravity is g=9.8065
[m/s2]

½ �V2 = ½ �(4*10-4 V)2 + �gL -¼�V2 - fD(L/D)(½ �V2)
1.49999984 V2 = 2gL - fD(L/D)V2
1.49999984 V2 = 39.226 –0.0512 V
V=4.1583 [m/s]

For laminar flow, Re < 2100 or V < 2100/(5*104) = 0.042 [m/s]. Since the best case V is
much greater than this, the flow will always turbulent.

The 2 equations that need to be solved are then

½ �V2 = 8*10-8 �V2 + �g(h+L) -¼�V2 - fD(L/D)(½ �V2)

fD

-0.5 = -2 log10 [e/D/3.7 + 2.51/(Re fD
0.5)]

In the first equation, � can be eliminated and V can be solved for in terms of fD. The
resulting expression for V can be substituted into the 2nd equation. Alternatively the 2
equations can be simultaneously solved using the matlab function fsolve or some other
means.

As previously stated, the diameter of the tank is 2.5 m, hence the volumetric flow rate is
approximately 4.91 times the derivative of the water height with respect to time, which is
plotted below.

Question 1.B. From the results o 1.A, starting with an initial depth of water in the
tank of 2 m, plot as a function of time the height of water in the tank until it empties.

The following matlab code was written by Professor Beers as a solution to this problem.

% plot_dh_dt_tank_drain_v2.m
%
% This MATLAB m-file makes a plot of dh/dt vs. h
% for the tank draining problem, and plots the
% tank height as a function of time.
% K. Beers. MIT ChE. 9/19/02

function iflag_main = plot_dh_dt_tank_drain_v2();

iflag_main = 0;

% set problem parameters
Param.Dt = 2.5; % tank diameter in m
Param.Dp = 5e-2; % pipe diameter in m
Param.L = 2; % drain pipe length in m
Param.density = 1000; % water density in Kg/m^3
Param.viscosity = 1e-3; % water viscosity in Pa*s
Param.e = 4.5e-5; % effective surface roughness of pipe (m)
Param.e_D = Param.e/Param.Dp; % relative surface roughness
Param.g = 9.8; % gravity acceleration (m/s^2)
Param.K_L = 0.5; % entrance loss coefficient

% Set maximum tank height (m)
h_max = 2;

% set minimum tank height (m)
h_min = 0.01;

% set interval in height values (m)
dh = 0.02;

% Set grid of tank height values
h_grid = [h_min : dh : h_max];
num_h = length(h_grid);

% Allocate vector to store output values
dh_dt_grid = zeros(size(h_grid));
Q_grid = zeros(size(h_grid));
V_grid = zeros(size(h_grid));
Re_grid = zeros(size(h_grid));
fd_grid = zeros(size(h_grid));

% Use initial guess of infinite Re limit
% for commercial steel pipe.

fd_guess = 0.02;

% Call solver to compute results for each h value.
verbose = 0;
for k = num_h : -1 : 1
 [dh_dt_grid(k),Q_grid(k),...
 V_grid(k),Re_grid(k),fd_grid(k)] = ...
 tank_drain(h_grid(k),fd_guess,Param,verbose);
 % store friction factor as guess for next
 % iteration
 fd_guess = fd_grid(k);
end

% Now, estimate times at which tank reaches each height
time = zeros(size(h_grid));
for k = (num_h-1) : -1 : 1
 dt = (h_grid(k)-h_grid(k+1))/dh_dt_grid(k+1);
 time(k) = time(k+1) + dt;
end

% Make plots of results
figure;
% tank height rate of change
subplot(2,1,1);
plot(h_grid,dh_dt_grid);
xlabel('h (m)');
ylabel('dh/dt (m/s)');
% tank height vs. time
subplot(2,1,2);
plot(time,h_grid);
xlabel('t (s)');
ylabel('h (m)');
gtext('Tank draining problem');

% new figure for other results
figure;
% Velocity in drain pipe
subplot(2,2,1);
plot(h_grid,V_grid);
xlabel('h (m)');
ylabel('V (m/s)');
% volumetric flow rate
subplot(2,2,2);
plot(h_grid,Q_grid);
xlabel('h (m)');
ylabel('Q (m^3/s)');

% Reynolds' number in drain pipe
subplot(2,2,3);
semilogy(h_grid,Re_grid);
xlabel('h (m)');
ylabel('Re');
% friction factor
subplot(2,2,4);
plot(h_grid,fd_grid);
xlabel('h (m)');
ylabel('f_D');
gtext('Tank draining problem');

iflag_main = 1;
return;

% ==
% tank_drain.m
%
% This MATLAB program calculates the velocity
% through the exit pipe for a tank-draining
% problem at a specified value of the height
% of water in the tank.
%
% K. Beers
% MIT ChE. 9/18/02
% v 2. 9/19/02

function [dh_dt,Q,V,Re,fd,iflag_main] = ...
 tank_drain(h,fd_guess,Param,verbose);

iflag_main = 0;

if(~exist('verbose'))
 verbose = 0;
end

Param.h = h; % tank height in m - INPUT VALUE

% For this initial guess of the friction factor, we calculate
% the corresponding value of the velocity from the macroscopic
% energy balances.
V_guess = tank_drain_calc_V(fd_guess,Param);

Re_guess = Param.density*V_guess*Param.Dp/Param.viscosity;
if(verbose)
 disp(['Guess fd = ', num2str(fd_guess)]);
 disp(['Guess velocity = ', num2str(V_guess)]);
 disp(['Guess Reynolds'' number = ', num2str(Re_guess)]);
end

% Now, with this initial guess of the friction factor,
% we use the MATLAB command fzero to solve the resulting
% nonlinear algebraic equation for fd.
options = optimset('Display','off');
if(verbose)
 options = optimset('Display','iter');
end

[fd,fval,exitflag,output] = fzero(@tank_drain_calc_f, ...
 fd_guess,options,Param);

% From the final value of the friction factor, we calculate
% the velocity through the pipe.
V = tank_drain_calc_V(fd,Param);
% the Reynolds' number
Re = Param.density*V*Param.Dp/Param.viscosity;
% the volumetric flow rate through the drain pipe (m^3/2)
Q = pi/4*Param.Dp^2*V;
% the rate of change of the height of the tank (m/s)
dh_dt = -Q/(pi/4*Param.Dt^2);

if(verbose)
 disp(['Darcy friction factor = ', num2str(fd)]);
 disp(['Drain pipe velocity (m/s) = ', num2str(V)]);
 disp(['Pipe Reynolds'' number = ', num2str(Re)]);
 disp(['Volumetric flow rate (m^3/s) = ', num2str(Q)]);
 disp(['Rate of change of height (m/s) = ', num2str(dh_dt)]);
end

iflag_main = 1;

return;

% ===
% This MATLAB function calculates the velocity through the
% drain pipe as a function of the Darcy friction factor.

% K. Beers. MIT ChE. 9/18/02
function V = tank_drain_calc_V(fd,Param);

var1 = 1 - (Param.Dp/Param.Dt)^4 + Param.K_L + ...
 fd*Param.L/Param.Dp;

V = sqrt(2*Param.g*(Param.h+Param.L)/var1);

return;

% ==
% This MATLAB function calculates the function values
% that goes to zero when the value of the Darcy
% friction factor satisfies the problem.
% K. Beers. MIT ChE. 9/18/02
% v. 2. 9/20/02
function fval = tank_drain_calc_f(x,Param);

fd = x;

% For this value of the friction factor, calculate
% the corresponding velocity from the balance
% equations.
V = tank_drain_calc_V(fd,Param);

% From this velocity, calculate the Reynolds' number
% in the pipe.
Re = Param.density*V*Param.Dp/Param.viscosity;

% If Re < 2100, laminar flow
if(Re < 2100)
 fval = fd - 64/Re;

% else for turbulent flow, use Colebrook equation
else
 var1 = Param.e_D/3.7 + 2.51/Re/sqrt(fd);
 fval = 1/sqrt(fd) + 2*log10(var1);
end

return;

Problem 2. Modeling steady-state behavior of a Nylon reaction system.

Question 2.A.1, using this statistical model, plot the chain length distributions at
conversions of 25%, 50%, 75%, 90%, 92.5%, 95%, 97.5%, 99%, 99.5%, 99.75%,
and 99%

“this statistical model” refers to equation 32 from the assignment sheet (reprinted here).

The following matlab code generated the above chain length distributions plot.

close all;
clear
%conversion
p=[.25 .50 .75 .90 .925 .95 .975 .99 .995 .9975 .999]';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Question 2.A.1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:length(p)
 if(any(i==[1 4 8])) %3 plots on 1st page 4 on next 2
 fig=figure;
 position=get(fig,'Position'); %on screen window size
 position(2)=position(2)-2/3*position(4); %lower window bottom
 position(4)=position(4)*5/3; %increase window height
 set(fig,'PaperPosition',[0.25 0.5 8 10],'Position',position)
 end
 subplot(4,1,mod(i,4)+1);
 xn=1/(1-p(i))*[1 1];
 xw=(1+p(i))/(1-p(i))*[1 1];
 xmax=2*max(xn(1),xw(1));
 x=floor([0:xmax/64:xmax])';
 P=p(i).^x.*(1-p(i)).^2;
 y=[min(P) max(P)];
 plot(x,P,'-b',xn,y,'-r',xw,y,'-r');
 ytext=y*[.20; .8];
 text(xn(1),ytext,'x_n'); %label xn line
 text(xw(1),ytext,'x_w'); %label xw line
 text(5/8*xmax,ytext,sprintf('conversion p=%g',p(i))); %list conversion
 if(any(i==[1 4 8]))
 title('Question 2.A.1');
 end
 xlabel('chain length x');
 ylabel('[P_x]/[P_1]_0');
 grid on;
 axis tight;
 %automatically print to jpeg files
 if(any(i==[3 7 11]))
 eval(sprintf('print -djpeg p2A1_%g.jpg',fig));
 end
end

Question 2.A.2, use your results from 2.A.1 to plot, as functions of the conversion,
the number and weight average chain lengths and the polydispersity. Make sure
that you consider high-enough chain lengths in your summation that the weight-
average chain length and polydispersity converge closely to their true values.

The simplified equations used to calculate xn, xw, and Z are derived in a straight-forward
manner:

These equations are plotted below with infinity approximated as 10000.

The matlab code used to generate these plots follows:

p=[.25 .50 .75 .90 .925 .95 .975 .99 .995 .9975 .999]'; %conversion
m=1:10000;
xn=zeros(size(p));
xw=xn;
for i=1:length(p)
 xn(i)=sum(m.*p(i).^(m-1))/sum(p(i).^(m-1));
 xw(i)=sum(m.^2.*p(i).^(m-1))/sum(m.*p(i).^(m-1));
end
z=xw./xn;
figure;
subplot(3,1,1); plot(p,xn); ylabel('x_n'); axis tight; grid on;
title('Question 2.A.2')
subplot(3,1,2); plot(p,xw); ylabel('x_w'); axis tight; grid on;
subplot(3,1,3); plot(p,z); ylabel('Z'); axis tight; grid on;
xlabel('conversion: p')

Question 2.A.3. From your results in 2.A.2, propose the corresponding formulas for
xw and Z.

xn, xw, and Z are expressed without an infinite series as:

This pattern of Z =1+p is readily observable from the previous plots. As “proof”, plots
identical to those found in part 2.A.2 were generated from these functions of conversion.

The code that generated these plots follows.

p=[.25 .50 .75 .90 .925 .95 .975 .99 .995 .9975 .999]'; %conversion
Xn=1./(1-p);
Xw=2*Xn-1;
Z=p+1;

figure;
subplot(3,1,1); plot(p,Xn); ylabel('x_n=1/(1-p)'); axis tight; grid on;
title('Question 2.A.3')
subplot(3,1,2); plot(p,Xw); ylabel('x_w=(1+p)/(1-p)'); axis tight; grid on;
subplot(3,1,3); plot(p,Z); ylabel('Z=1+p'); axis tight; grid on;
xlabel('conversion: p')

Part 2.B. Modeling the continuous polymerization process.

Question 2.B.1 Write a MATLAB program that computes p, xn, xw, and Z for each
reactor in the 3 CSTR process shown in the diagram above. (diagram not included
in solution set)

While coding style varies the equations central to solving this program are not. Their
derivation is as follows. The rate reactions for �0, �2, and W are:

k(fc) needs to be replaced in all three rate equations. A, B, and L also need to be replaced
in the rate equation for water production.

These rates are then substituted into “mass balance” equations. Derivatives with respect
to time are set to zero because a steady state reaction is being modeled.

The resulting equations (the ones to be used in the matlab program) are:

The matlab code written by Professor Beers as a solution for this problem follows:

% Nylon_polycond.m
%
% This MATLAB program calculates the conversions and
% averaged chain lengths of Nylon polymer produced
% in a 3 CSTR process. Moment equations with the
% Schultz-Flory closure approximation for the 3rd

% moment are used. Equal balance between diamine
% and diacid monomers is assumed.
%
% K. Beers. MIT ChE. 9/16/2002

function [xn,xw,Z,p,iflag_main] = ...
 Nylon_polycond();

iflag_main = 0;

% First, set the simulation parameters.
lambda_1 = 1; % first moment of CLD

% the monomer feed CLD moments
% and water concentation
lambda_0_feed = 1;
lambda_2_feed = 1;
W_feed = 0;

% the equilibrium constant
Keq = 100;

% the reference Daemkohler number
% of the first reactor. The other
% reactors are set to have the same

% volume, so the Damkohler number
% of a CSTR is equal to
% Da_ref*lambda_0_in.
Da_ref = 50;

% the user is now prompted to input the
% common (km*A/V)*tres - the product of the mass
% transfer coefficient with the area/volume
% and the residence time of the reactor.
% If a column vector is input, the calculation
% is repeated for each value of the
kmApV_min = input('Input min. (k_m A / V)*t_res : ');
kmApV_max = input('Input max. (k_m A / V)*t_res : ');
num_kmApV = input('Input number of kmApV values : ');
km_A_per_V_tres = logspace(log10(kmApV_min), ...
 log10(kmApV_max), num_kmApV);

% if 1, plots are to be made
iplot = 1;

% For each value of the mass transfer coefficient,
% we repeat the calculation of the polymer properties
% in each reactor. First, we allocate space for
% the results.

% number-averaged chain lengths in each CSTR
xn = zeros(num_kmApV,3);
% weight-averaged chain lengths in each CSTR
xw = zeros(num_kmApV,3);
% polydispersities in each CSTR
Z = zeros(num_kmApV,3);
% conversions in each CSTR
p = zeros(num_kmApV,3);

% iterate over each mass transfer value
for i_kmApV = 1:num_kmApV
 kmApV_tres = km_A_per_V_tres(i_kmApV);

 % use sequential approach to compute
 % polymer properties in each reactor
 lambda_0_in = lambda_0_feed;
 lambda_2_in = lambda_2_feed;
 W_in = W_feed;
 for i_CSTR = 1:3
 [lambda_0,lambda_2,W,iflag] = ...
 polycond_CSTR_SS(lambda_0_in, ...

 lambda_2_in, W_in, Da_ref, ...
 kmApV_tres, Keq, lambda_1);
 if(iflag >= 1) % success
 % record results
 xn(i_kmApV,i_CSTR) = lambda_1/lambda_0;
 xw(i_kmApV,i_CSTR) = lambda_2/lambda_1;
 Z(i_kmApV,i_CSTR) = lambda_2*lambda_0/lambda_1^2;
 p(i_kmApV,i_CSTR) = 1 - lambda_0/lambda_1;
 % use as input to next CSTR
 lambda_0_in = lambda_0;
 lambda_2_in = lambda_2;
 W_in = W;
 else
 error(['polycond_CSTR_SS: iflag = ', ...
 int2str(iflag)]);
 end
 end
end

% graph results
if(iplot ~= 0)
 figure;
 % xn vs. kmApV
 subplot(2,2,1);
 semilogx(km_A_per_V_tres,xn(:,1));
 hold on;
 semilogx(km_A_per_V_tres,xn(:,2),'-.');
 semilogx(km_A_per_V_tres,xn(:,3),':');
 axis([kmApV_min, kmApV_max, 1, 1.1*max(max(xn))]);
 xlabel('(k_m A / V)\theta');
 ylabel('x_n');
 legend('1', '2', '3',2);
 % xw vs. kmApV
 subplot(2,2,2);
 semilogx(km_A_per_V_tres,xw(:,1));
 hold on;
 semilogx(km_A_per_V_tres,xw(:,2),'-.');
 semilogx(km_A_per_V_tres,xw(:,3),':');
 axis([kmApV_min, kmApV_max, 1, 1.1*max(max(xw))]);
 xlabel('(k_m A / V)\theta');
 ylabel('x_w');
 % Z vs. kmApV
 subplot(2,2,3);
 semilogx(km_A_per_V_tres,Z(:,1));
 hold on;
 semilogx(km_A_per_V_tres,Z(:,2),'-.');
 semilogx(km_A_per_V_tres,Z(:,3),':');
 axis([kmApV_min, kmApV_max, 1, 1.1*max(max(Z))]);
 xlabel('(k_m A / V)\theta');
 ylabel('Z');
 % p vs. kmApV
 subplot(2,2,4);
 semilogx(km_A_per_V_tres,p(:,1));
 hold on;
 semilogx(km_A_per_V_tres,p(:,2),'-.');
 semilogx(km_A_per_V_tres,p(:,3),':');
 axis([kmApV_min, kmApV_max, 0.9*min(min(p)), 1]);
 xlabel('(k_m A / V)\theta');
 ylabel('p');
 gtext('3 CSTR Nylon polycondensation process');
end

iflag_main = 1;

return;

% ===
% This MATLAB routine computes the values of each moment
% in a CSTR at steady state for a simple condensation system.
% K. Beers. MIT ChE. 9/16/02

function [lambda_0,lambda_2,W,iflag] = ...
 polycond_CSTR_SS(lambda_0_in, ...
 lambda_2_in, W_in, Da_ref, ...
 kmApV_tres, Keq, lambda_1);

iflag = 0;

% First, make initial guesses for the
% moments based on the inlet concentrations
lambda_0_guess = lambda_0_in;
lambda_2_guess = lambda_2_in;
W_guess = W_in;
% stack guesses into column vector
x_guess = [lambda_0_guess; lambda_2_guess; W_guess];

% set Daemkohler number based on input concentration.
% This has effect that all CSTR's are of the same
% volume.
Da = Da_ref * lambda_0_in;

% Since this guess should be exact when the residence
% time goes to zero, we use homotopy.
num_homotopy = 10;
for i_homotopy = 1:num_homotopy
 kmApV_tres_work = ...
 i_homotopy/num_homotopy * ...
 kmApV_tres;
 Da_work = ...
 i_homotopy/num_homotopy * Da;

 % call MATLAB fsolve() to solve system of equations
 options = optimset('TolFun',1e-8,'LargeScale','off', ...
 'Display','off');
 [x,fval,exitflag] = fsolve(@fun_polycond_CSTR_SS, ...
 x_guess,options,lambda_0_in, lambda_2_in, W_in, ...
 Da_work, kmApV_tres_work, Keq, lambda_1);
 x_guess = x;

end

% assign output
lambda_0 = x(1);
lambda_2 = x(2);
W = x(3);

iflag = exitflag;

return;

% ===
% This MATLAB routine computes the function values for the
% governing equations of a polycondensation CSTR at steady
% state.
% K. Beers. MIT ChE. 9/16/02

function [f,iflag] = ...
 fun_polycond_CSTR_SS(x, ...
 lambda_0_in, lambda_2_in, ...
 W_in, Da, ...
 kmApV_tres, Keq, lambda_1);
iflag = 0;

% unstack unknowns into real-life names
lambda_0 = x(1);
lambda_2 = x(2);
W = x(3);

% allocate vector for function values
f = zeros(3,1);

% compute third moment from closure approximation
lambda_3 = lambda_2*(2*lambda_2*lambda_0 - lambda_1^2) ...
 / (lambda_1*lambda_0);

% balance for zeroth moment
f(1) = lambda_0_in - lambda_0 + Da/lambda_0_in * ...
 (-lambda_0^2 + W/Keq*(lambda_1-lambda_0));

% balance for zecond moment
f(2) = lambda_2_in - lambda_2 + Da/lambda_0_in * ...
 (2*lambda_1^2 + W/Keq/3*(lambda_1 - lambda_3));

% balance for water condensate

f(3) = W_in - W - kmApV_tres*W + ...
 Da/lambda_0_in * ...
 (lambda_0^2 - W/Keq*(lambda_1-lambda_0));

return;

Question 2.B.2. Using a Damkohler number of 50 for the first CSTR, plot as
functions of (km A / V)� the number-averaged and weight-averaged chain lengths,
the polydispersities, and the conversions in the product streams from each reactor.

Explain why one observes limiting values of the chain lengths as (km A / V)�➜ 0 and
(km A / V)�➜ �.

(km A / V)� is a measure of the purge gas stream’s ability to take on and remove water.
The lower limit levels out because essentially no water is being removed. The upper limit
is set but the reactor residence time. As the Damkohler number approaches infinity, the
reaction rate approaches its equilibrium value. The equilibrium constant of the reaction is
defined to be Keq=[L]eq[W]eq/([A]eq[B]eq). Using equation 37 (and noting that water is
produced in proportion to the linkages) we get: Keq=(�1-�0)2/�0

2. Hence
xn=�1/�0=1+Keq

½, xw is similarly set by Keq.

Why is the polydispersity greater for large mass transfer rates than would be
expected for a batch polymerization, where the chain length distribution follows the
Flory statistical model?

As (km A / V)�➜ � the reverse reaction is increasingly penalized. We get high
polydispersity, Z, because of the residence time distribution. Some chains take longer

than others to pass through the reactor. These chains have a chance to grow longer than
those that pass through immediately. This results in a Z > 2.

Why does the polydispersity decrease as the mass transfer rate decreases?

As (km A / V)�➜ 0 less or even no water is removed. Longer chains have more linkages
so they are a “bigger target” for reverse reactions, that is they are more likely to be
broken up. This limits the polydispersity.

	Solution set
	Problem 1. Tank-draining problem
	Why does the polydispersity decrease as the mass transfer rate decreases?

