
Fall 2002. 10.34. Numerical Methods Applied to Chemical Engineering

Homework # 4. Nonlinear algebraic equations and matrix eigenvalue problems

Assigned Monday 10/6/02. Due Friday 10/11/02

Problem 1. Calculation of vibrational modes with eigenvalue analysis

In this homework, you will use a program that computes the normal (vibrational) modes of 
a 2D lattice (see figure below) using eigenvalue analysis. A MATLAB program will be 
posted on the web site that calculates each vibrational mode and natural frequency for this 
system. Another program will be provided that takes this information and makes a 
“movie” to animate a selected vibrational mode. You will be asked to use these programs 
to compare the natures of the high and low energy vibrational modes of this structure. No 
programming will be required!

FIGURE 1. 2-D lattice of point mass-spring system

In this problem, we wish to investigate the vibrational modes of an 2-D lattice of point 
masses connected by springs. We assume that the lattice is infinite, but we only want to 
simulate a small section of N “rows” and N “columns” of points, shown in the figure 
above as the black, filled circles. To mimic the effect of having an infinitely large lattice of 
points, we employ periodic boundary conditions in which we assume that the system is 
bounded by perfect copies of itself on all sides (see figure below). When one of the 
“atoms” in our system moves to the left, its image also moves to the left. In the figure 
below, curved arrows link the atoms in the system (filled circles) to their images outside of 
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the system (open circles). For further details on how the periodic boundary condition is 
employed, consult the attached MATLAB program. 

FIGURE 2. Linking of atoms and their images in period boundary conditions to mimic an infinite 
lattice

We now number the lattice sites from 1 to  as shown in the figure below. 

FIGURE 3. Numbering system for lattice sites, including identification of neighbor site bonding

S N
2

=
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While we will use the master indices for labelling purposes, it is easier to write the poten-
tial energy function for the system if we label the site in “column” i and “row” j as . 
The position of this site is

(EQ 1)

We write the total potential energy of the system as a sum of harmonic springs bonding 
neighboring lattice sites,

(EQ 2)

A factor of  is added before the summation to correct for the overcounting of each 
spring twice. The distance between site  and the image of site  with which it 
interacts is

(EQ 3)

where we implement the periodic boundary conditions (figure 2) as

(EQ 4)

(EQ 5)

We subtract from each bond distance the preferred (zero-energy) value of  so that at 
mechanical equilibrium, all lattice sites are separated by this distance. The position in the 
minimum energy state of the  lattice site - that in “column”  and “row”  with master 
index  - is
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(EQ 6)

We wish to compute the vibrational modes of the lattice and their natural frequencies. To 
do so, we pack all of the degrees of freedom of the system into a single vector of length 

, . We also define a vector  of the forces on each degree of freedom that is the 
negative of the gradient of the potential energy. 

(EQ 7)

For the potential energy function above, the derivatives of the potential energy with 
respect to the lattice site positions are computed in a straight-forward, if tedious, manner.

(EQ 8)
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(EQ 9)

We define also a matrix of size  of the second derivatives of the energy with respect to 
each degree of freedom, the so-called Hessian matrix , with the elements

(EQ 10)

Here we see that because the order of differentiation does not matter, the Hessian matrix is 
necessarily real and symmetric, so that all eigenvalues of  are real and all eigenvectors of 

 are mutually orthogonal. 

(EQ 11)

Rather than derive the Hessian analytically, we will compute the value of the Hessian - 
evaluated at  using finite difference approximations,

(EQ 12)

For each of the degrees of freedom  in the system, we change the value of  
by some small value  and evaluate again the vector of first derivatives. Application of the 

formula above provides a numerical estimate of the values in the  column of the Hessian 
matrix.

In general, we are given the potential energy function, and must find the state of minimum 
energy numerically. Below, we show in an optional discussion section how one may mod-
ify Newton’s method to find the minimum. For this system, we can identify a priori the 
values of the generalized coordinates at the minimum energy state, . 
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(EQ 13)

We now wish to consider the nature of the vibrations of the system around this minimum 
energy state. To address this question, we write the time-dependent values of the system 
coordinates as the sum of the minimum energy state plus a small time-varying “departure” 
term,

(EQ 14)

The equations of motion for each degree of freedom are of the form,

(EQ 15)

For small ,we can expand the potential energy function as a truncated Taylor series 
around the minimum energy state,

(EQ 16)

Since at the minimum energy state, all forces are zero, the first order derivatives in this 
expansion are zero, and the second order derivatives are just the elements of the Hessian 
matrix  evaluated at the minimum energy state. Therefore, for small departures from the 
minimum energy state, we can approximate the potential energy as

(EQ 17)

In general, this quadratic expression for the potential energy in the vicinity of a minimum 
is an approximation, but for our system it is exact, since our potential energy is simply the 
sum of a number of harmonic springs.
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Substituting this equation into the equation of motion for  yields

(EQ 18)

where in the last line we have used the symmetry of the Hessian matrix. If we assume an 
equal mass  for each lattice site, we define the mass matrix

(EQ 19)

Defining the vector of the second time derivatives of the coordinates as,

(EQ 20)

the system of differential equations for the vibrational motion around the minimum energy 
state is

(EQ 21)
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particular case where , it is easy to convert the problem into a simple eigenvalue 
problem of the sort that we have been considering,

(EQ 22)

We now define the eigenvalues and eigenvectors of the Hessian matrix as

(EQ 23)

Since the Hessian matrix is real and symmetric, we know that the eigenvalues of  are 
real and the eigenvectors are mutually orthogonal, and so form a convenient basis set for 
representing any vector. We therefore write a trial form of  as the linear combination

(EQ 24)

So that the system of equations becomes,

(EQ 25)

Equating the left and right sides separately in each eigenvector direction yields the follow-
ing uncoupled set of equations for each normal coordinate ,

(EQ 26)

We write a trial form of the solution as

(EQ 27)

and substitute it into the differential equation,

(EQ 28)
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(EQ 29)

For this frequency to be a real number, we need each eigenvalue of  to be positive, or at-
least non-negative . To show that this is the case, we write the expansion of the poten-
tial energy around the minimum energy state as

(EQ 30)

Expanding the departure vector in terms of the eigenvectors of ,

(EQ 31)

we obtain

(EQ 32)
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involving uniform translation, there will be two eigenvectors of  with eigenvalues of 
zero. These two translational eigenvectors will be linear combinations of the vectors,

ωj

λ j

m
----=

H

λ j 0≥

U q( ) U q̂( )–
1
2
--- δmHmnδn

n 1=

F

∑
m 1=

F

∑ 1
2
---δT

Hδ= =

H

δ c1w
1[ ] … cFw

F[ ]
+ +=

U q( ) U q̂( )–
1
2
---δT

H c1w
1[ ] … cFw

F[ ]
+ +[ ]=

U q( ) U q̂( )–
1
2
---δT

c1Hw
1[ ] … cFHw

F[ ]
+ +[ ]=

U q( ) U q̂( )–
1
2
--- c1w

1[ ] … cFw
F[ ]

+ +[ ]
T

c1λ1w
1[ ] … cFλFw

F[ ]
+ +[ ]=

U q( ) U q̂( )–
1
2
--- c1

2λ1 … cF
2 λF+ +[ ]=

H q̂ U q( ) U q̂( )– 0>

H H

H

October 7, 2002 9



(EQ 33)

Similarly, we can perform any rigid body rotation on the lattice without changing the 
potential energy, so that there will be an additional two invariant rotational degrees of 
freedom that introduce another two eigenvectors corresponding to zero eigenvalues.

In general, these would be the only energy-invariant eigenvectors, but for our 2-D lattice, 
there are a number of other zero-energy eigenvectors corresponding to shear deformation 
modes. From inspection of the regular 2-D lattice, we see that we can take any row or col-
umn and displace it uniformly by a small amount without changing, to first order, the dis-
tance between any bonds. For this type of motion, we are only rotating the bonds, not 
stretching them. Therefore, this regular 2-D lattice will have the unusual, and unphysical, 
property of a zero shear modulus (no resistance to infinitesimal shear deformations). Due 
to the presence of these zero-frequency modes, for this potential energy function, 

, and all eigenvalues of  are greater than or equal to zero (i.e.  is positive 

semi-definite).

Once we have computed the eigenvectors and eigenvalues of , and the corresponding 
natural frequencies  of each vibrational mode, we can “animate” each mode separately 
by plotting the positions of the lattice sites as the coordinate vector  changes in time 
according to the equation

(EQ 34)

 is an arbitrary amplitude of the vibration. To make the nature of the vibration clearly 
visible on a plot of the lattice positions as functions of time, we could choose .

The MATLAB program lattice_2D_vib.m (posted on the 10.34 assignments web site) cal-
culates for the potential energy function given above the normal modes from eigenvalue 
analysis of the Hessian matrix. This program stores the computed normal mode data in a 
.mat file. A second program animate_2D_vib.m reads this .mat file and “animates” a 
selected vibrational mode.

In lattice_2D_vib.m, you are asked to input the number  of sites per row or column in the 
lattice and whether to use add a random small number of each spring constant. This “ran-
domization” is done to remove the degeneracy (many linearly independent modes with the 
same frequency) inherent to a regular 2-D lattice. Let us say that we have 10 different 
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modes that all have the same frequency. We could take any linear combination of these 
modes to produce a new “mixture” of modes that is also an eigenvector with the same fre-
quency. If we add a small random number individually to each spring constant, we remove 
this “mixing” between degenerate modes, and can animate more localized eigenvectors 
that are easier to interpret visually. 

In addition, the user is asked whether to compute all eigenvalues/eigenvectors using the 
QR algorithm of eig(), or to compute a few largest or smallest eigenvalues using eigs(). 
Since the former method requires full matrix storage of the Hessian and ~  operations, 
this option is recommended for only systems with a relative small number of rows/col-
umns of the lattice (say under 20).

Your assignment is the following:

1. First, use this program to compute the normal modes of a 3x3 lattice. Visualize the 
modes both with and without the randomization of the spring constants. With a small ran-
dom number added to each spring constant, you should observe more localized versions of 
the individual modes. Visualize each zero-energy mode. Can you explain why they are not 
penalized by the energy model in terms of the stretching of the springs?

2. Compute the normal modes of a 10x10 lattice. First, compute the individual frequencies 
without randomization, and use the MATLAB hist() command to make a histogram of the 
frequencies (you will have to read in the .mat output file).  Once you have identified the 
distinct frequencies, recompute the modes using randomization to “localize” the modes 
and visualize a mode of each distinct frequency. Print out the graph that shows the maxi-
mum amplitude offset of the lattice points and compare the natures of the low and high 
frequency modes.

You should be able to see that the lowest (non-zero) frequency modes involve long-ranged 
collective motion of many sites. Two sites that are close together are displaced at any one 
time by similar distances. By contrast, higher-frequency modes - those penalized more by 
the potential energy function - involve very different displacements among neighboring 
sites. This is a general phenomenon - the fastest-modes are of the shortest length scales 
and involve the local motion of atoms and the slowest-modes have the longest length 
scales and involve the collective motion of many atoms.

3. Plot as a function of the number of row(columns) in the system the values of the lowest 
and highest non-zero frequencies for lattices of size . Do not use randomiza-
tion.

You merely have to perform these calculations, print out the graph, and discuss briefly 
your observations. 

N
3
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Optional discussion - finding the minimum energy state numerically

For the regular 2-D lattice, we know a priori the positions of each site in the minimum 
energy state. In general, this is not the case. We have some model that tells us the total 
energy and the gradient (the vector of first derivatives with respect to each degree of free-
dom). Perhaps also, we have some guess of what the minimum energy state should look 
like, but we must compute the positions of the atoms in the minimum energy state from 
our energy model. Only once we have identified the minimum energy state can we apply 
the normal mode analysis outlined above.

This is an example of an optimization problem. We have some vector of state variables,

(EQ 35)

and we want to find the values of these variables, , that minimizes some specified cost 
function . In this case the state variables are the positions of each lattice site and the 
cost function is the total potential energy of the system. How do we find the minimum 
numerically?

Since at the minimum, we know that the gradient function, defined as

(EQ 36)

is zero, we expect that we might be able to find the minimum by applying Newton’s 
method to the system of equations

(EQ 37)

We can in fact find the minimum using this approach, but we need to modify the algorithm 
slightly to make sure that we find a minimum of  as opposed to a maximum or a sad-
dle point (see figure below).

FIGURE 4. Characterization of extrema based on eigenvalues of Hessian

We assume that we have an model that allows us to calculate the value of the cost function 
and the gradient vector. Additionally, it would be nice to be able to calculate the Hessian 
analytically, but we can use finite differences to estimate it if this is not the case. If we 
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make an initial guess of the minimum, , how do we generate a sequence of points 

 that approach the minimum at ?

We apply Newton’s method to the system  to obtain the update rule,

(EQ 38)

where we solve the linear system for , e.g. using Gaussian elimination, and then only 
take some fraction  of this step such that the cost function is reduced (for example 
with the weak line search algorithm that we introduced for the reduced-step Newton algo-
rithm). If we can ensure that the cost function is reduced at each step, we will end up at a 
minimum rather than a maximum, but how can we be sure that an appropriate  exists 

such that ?

For very small values of , we can use a Taylor series expansion to write

(EQ 39)

We use the Newton update equation to substitute for the gradient to obtain

(EQ 40)

Therefore, as long as the Hessian is positive-definite, Newton’s method will point in a 
“downhill” direction towards a minimum.

It is certainly possible that when our initial guess is far away from the local minimum that 
the Hessian is not positive-definite. When this happens we can modify the update equation 
by adding to the Hessian a scalar  times the identity matrix.

(EQ 41)

We choose the value of  to be large enough that we can ensure that the matrix  
is positive-definite, for example by applying Gershogin’s theorem.

Later we will use this technique of optimization to determine the value of parameters in 
nonlinear models that fit with experimental data.
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