
Fall 2002. 10.34. Numerical Methods Applied to Chemical Engineering

Homework # 5. Boundary Value Problems

Assigned Friday 10/18/02. Due Friday 10/25/02

Problem 1. Green’s function calculation of a 1-D temperature profile

Consider the heat transfer problem outlined in the figure below. We have a slab of material 
of thickness . On one side of the slab is a fluid at a temperature . On the other is a 
fluid at a temperature . These fixed temperatures set the boundary conditions on the 
temperature field within the catalyst at  and  respectively. The slab may be con-
sidered to be infinitely long and tall, so that the only variation of temperature that we wish 
to consider occurs in the  direction. Within the slab are located several regions in which 
electrical resistance is used to dissipate energy as heat. Within these heat generating 
regions, the rate of heat produced per unit volume is equal to a uniform specified value  

in SI units of J/(s-m3). 

We wish to calculate the temperature profile within the slab and the rate of heat transfer 
per unit area to the fluids on either side. To do so, we will apply Green’s function analysis. 
The derivation is outlined below. You are to perform the calculation and plot the resulting 
temperature field. Then, compute the heat flux per unit area to the fluids on each side of 
the slab.

FIGURE 1. Geometry of 1-D heat transfer problem

First, we derive the governing differential equation for the temperature field. Let the rate 
of local heat generation per unit volume be a specified function  that we write as
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(EQ 1)

where  is equal to 1 if the point  is within a heat generating region and is 0 every-
where else. The boundary value problem for the steady state temperature field is then

(EQ 2)

 is the thermal conductivity. To solve this boundary value problem, we will use the tech-
nique of Green’s functions outlined below. To do so, we first must convert the boundary 
conditions by defining the “excess” temperature  from the expression

(EQ 3)

In the absence of heat generation, this “excess” temperature will be uniformly equal to 
zero. We substitute this form of the temperature field into the heat equation to obtain the 
following boundary value problem for the excess temperature,

(EQ 4)

This modified boundary value problem is of a form that we can solve using the Green’s 
function approach outlined below.

Your assignment is the following

1.A. Using the Green’s function method outlined above, compute the temperature profile 
for the following set of parameter values.

(EQ 5)

1.B. From this solution, compute the heat flux across each side of the slab into the sur-
rounding fluids.
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A Primer on the use of Green’s functions

We wish to solve a boundary value problem of the following form, where  is some 
known “data” function.

(EQ 6)

For this boundary value problem, we define the Green’s function  as that satisfying 
the related boundary value problem,

(EQ 7)

The Dirac delta function  is a “function” that is zero everywhere but at , and 
that at that point blows up to infinity such that

(EQ 8)

We can represent the Dirac delta function by taking the following limit,

(EQ 9)

The figure below shows how the Dirac delta function is approached as we shrink the stan-
dard deviation of the normal distribution to zero. As we reduce , the distribution 
becomes more sharply peaked, but the area under the integral remains equal to one.
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FIGURE 2. Dirac delta function as limit of Gaussian normal distribution as standard deviation 
approaches zero

We will never have to evaluate the Dirac delta function, but will only use the property that 
a function  defined on the domain  may be written as

(EQ 10)

To see that this equation is valid, we note the Dirac delta function is zero except at . 
We therefore can choose a very small, but non-zero, number  and write this integral as

(EQ 11)
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It is this property of the Dirac delta function, that upon integration it “extracts” the value 
of a function at a specific point, that makes it useful in the solution of boundary value 
problems involving linear differential equations.

We propose that the Green’s function  defined above can be used to express the solu-
tion to the boundary value problem as

(EQ 12)

To see that this is true, we substitute this trial form of the solution into the differential 
equation,

(EQ 13)

We therefore find that we can satisfy the differential equation for all possible functions 
 as long as the Green’s function satisfies the differential equation

(EQ 14)

In particular, we want to find solutions to the differential equation that satisfy the bound-
ary conditions,

(EQ 15)

This implies that the Green’s function must satisfy the boundary conditions,

(EQ 16)
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as specified in the original definition of .

The whole idea behind the use of Green’s functions is that once we find the functional 
form of , we can solve the problem for any given function  merely by evaluating 
a single definite integral,

(EQ 17)

There are two approaches that we may use to compute the Green’s function for this prob-
lem. The first is a rather straight-forward method of writing the Green’s function as a lin-
ear combination of the eigenfunctions of the second derivative.

(EQ 18)

We substitute this expression into the differential equation and use the fact that  is an 
eigenfunction of the second derivative to obtain

(EQ 19)

We next use the fact that sine functions are orthogonal,

(EQ 20)

to compute the coefficient functions . To do so, we multiply the differential equation 
by  and integrate over the domain . All terms in the summation are zero except 
for that with , yielding the coefficient function .

g x ξ,( )

g x ξ,( ) f x( )

u x( ) f ξ( )g x ξ,( ) ξd

0

L

∫=

g x ξ,( ) cm ξ( )χm x( )
m 1=

∞

∑= χm x( ) 2
L
--- 

 
1
2
---

mπx L⁄( )sin=

χm x( )

x
2

2

d

d g
cm ξ( )

x
2

2

d

d χm

m 1=

∞

∑ δ x ξ–( )= =

cm ξ( ) mπ L⁄( )2
–[ ]χ m x( )

m 1=

∞

∑ δ x ξ–( )=

χm χn〈 | 〉 2
L
--- 

  mπx L⁄( )sin nπx L⁄( )sin xd

0

L

∫ δmn
1 m, n=

0 m n≠,



= = =

cm ξ( )

χn x( ) 0 L[ , ]

m n= cn ξ( )
October 18, 2002 6



(EQ 21)

In terms of this eigenfunction expansion, the Green’s function takes the form

(EQ 22)

While this form of the Green’s function can be used to perform calculations, with a bit of 
physical insight, we can obtain an equivalent functional form of  that is much easier 
to use. To do so, we note that since the Dirac delta function  is non-zero only at 

, we can write for ,

(EQ 23)

Therefore, in this region, the form of the Green’s function must be

(EQ 24)

But, we know that at , we have the boundary condition , requiring that

(EQ 25)

Therefore, we have determined that for , the Green’s function must be of the form

(EQ 26)
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(EQ 27)

that implies that for this region, the Green’s function is of the form

(EQ 28)

The boundary condition that  requires that

(EQ 29)

so that for , the Green’s function is

(EQ 30)

We have reasoned that the Green’s function must be of the functional form,

(EQ 31)

We now need to establish two independent relations between  and  to specify 
exactly the Green’s function. The first is rather straightforward; we require that the 
Green’s function be continuous at . This yields

(EQ 32)

The second relation between  and  comes from a bit of physical insight into how 
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(EQ 33)

This equation is obtained from a conservation equation on the quantity of  where  
is a source term. To see that this is so, we write a balance on  in a differential control vol-
ume between  and ,

(EQ 34)

The first term on the left is the “diffusive” flux into the control volume at  and the 
second term is the “diffusive” flux out the other side. The term on the right is the “source” 
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term and is the rate of generation of  within the control volume. Dividing this balance by 
 yields the equation

(EQ 35)

At ,

(EQ 36)

and we obtain the differential equation

(EQ 37)

We now apply this same concept to the Green’s function equation,

(EQ 38)

We form a balance for  on a small region surrounding the point ,

(EQ 39)
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We then use these results in the shell balance around  to obtain the “jump” condition,

(EQ 41)
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(EQ 42)

These two equations are readily solved to yield

(EQ 43)

The Green’s function for this problem therefore takes the simple form,

(EQ 44)

This means that the solution to the boundary value problem,

(EQ 45)

is computed very simply by taking the integral
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(EQ 47)

Therefore, if we have a “data” function that is the sum of two terms,

(EQ 48)

we can write the differential equation as

(EQ 49)
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(EQ 50)

where the two “contributions” to the solutions from each data function are computed indi-
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(EQ 51)
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FIGURE 3. “Hat” functions used to approximate  from its values at distinct grid points

We see that this hat function has the following properties:

1. It is zero outside of a small interval 

2. For any grid point , 

3. The area under each hat function is always equal to one, but as , the hat function 
becomes more sharply peaked around 

4. For any value of  that is not a grid point, the approximation for  presented above 
interpolates linearly between the two nearest grid points to estimate the local value of 

Using the property of linearity, we write the solution as

(EQ 54)
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The boundary value problem for  is

(EQ 57)

From the functions , we can compute the solution for any  from the summation,

(EQ 58)
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Problem 2. Temperature distribution on a stove top

Consider the following “kitchen” transport problem. We have an electric stove top com-
prised of several heating elements. Each element contains within a ceramic matrix two 
annular regions in which heat is generated by electrical resistance (see figure below).

FIGURE 4. Stove top geometry showing 2x2 grid of heating elements

The geometry of an individual heating element in shown in the figures below. The first 
figure shows a top view of the geometry in the  plane. Each of the two heat generation 
regions is described by an annular region of specified inner radius and thickness. A side 
view in the second figure shows that these heat generation regions penetrate to a specified 
depth . The thermal conductivities of the ceramic matrix and the heat generation mate-
rial are assumed to equal a common value . Within the heat generation regions, the spec-
ified volumetric rate of heat generation is .

We wish to calculate the temperature profile within the heat element. Since we are consid-
ering but a single element within a periodic array of identical copies, we employ periodic 
boundary conditions in the  plane. In the z direction, we assume that on top of the 
heating element ( ) a metal pot has been placed containing boiling water. If the ther-
mal conductivity of the metal pot is much higher than the thermal conductivity of the 
ceramic matrix, we expect that at steady state, the temperature of the upper surface will be 
equal uniformly to that of boiling water,  (100 C under standard conditions). On the bot-
tom surface, we assume that there is an underlying insulator layer, so that the heat flux out 
the bottom is zero. This implies a zero normal gradient at the bottom surface, .
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FIGURE 5. Top view of heating element geometry in (x,y) plane

FIGURE 6. Side view of heating element showing depth profile

We can simplify the boundary conditions for this system by defining a dimensionless tem-
perature field,

(EQ 61)

and dimensionless coordinates

(EQ 62)
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(EQ 63)

The boundary value problem, in these dimensionless variables, is

(EQ 64)

The following function “switches on” the heat generation only within the specified annu-
lar regions,

(EQ 65)
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Your assignment is the following

1.A. Propose a general form for  as a linear combination

(EQ 67)

where the functions , , and  are either sine or cosine functions that satisfy 
the boundary conditions of the problem and possess the desired symmetry. Note that 

 and . These sine and cosine functions are eigenfunctions of 
the second derivative,

(EQ 68)

1.B. Substitute the general form of the dimensionless temperature profile into the govern-
ing equation, and compute the temperature profile for the following parameter values.

(EQ 69)

Note that due to the linearity of the differential equation, we need solve the problem only 
once for a value of . Let this solution be . Then, if we require the solu-
tion for other values of the heat generation rate, we need merely multiply this solution by 
the desired value of  to obtain the new solution,

(EQ 70)

 From your results, plot the dimensionless temperature field in the mid-plane in  
defined by .

Hints:

1. Use the fact that cosine and sine functions have orthogonality conditions to calculate the 
coefficients in your expansion. For example, consider the integral

(EQ 71)

θ χ η ζ, ,( )

θ χ η ζ, ,( ) cm n k, , Xm χ( )Yn η( )Zk ζ( )
k 0=

∞

∑
n 0=

∞

∑
m 0=

∞

∑=

Xm χ( ) Yn η( ) Zk ζ( )

x( )cos x–( )cos= x( )sin x–( )sin–=

x
2

2

d

d Ax( )cos– A
2

Ax( )cos=
x

2

2

d

d Ax( )sin– A
2

Ax( )sin=

a
2
3
---= b 0.5=

r1 L⁄ 0.1= t1 L⁄ 0.05=

r2 L⁄ 0.25= t2 L⁄ 0.05=

σ 1= θ χ η ζ σ 1=;, ,( )

σ

θ χ η ζ σ;, ,( ) σ θ χ η ζ σ 1=;, ,( )×=

χ ζ,( )
η 0=

2mπx( )cos 2nπx( ) xdcos

1 2⁄–

1 2⁄

∫ 1
2
---δmn=
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We could establish this orthogonality condition analytically, probably by consulting a 
table of integrals. More easily, we could check that it is valid by using the MATLAB func-
tions trapz() or quad() to compute the value of the integral numerically for different values 
of  and . Using this latter approach, you should be able to quickly establish the orthog-
onality relations for the basis functions that you select in 2.A.

2. The values of your coefficients will be proportional to integrals of the form

(EQ 72)

For the annular geometry of the system, you can evaluate these integrals with little effort. 
First, you may note that since there are no heat generation regions for , you can 
rewrite the integral as

(EQ 73)

Next, we use the annular nature of the heat generation regions to note that for , the 

function  is solely a function of  to write

(EQ 74)

At this point it is best to convert the first integral to polar coordinates. Rather than evaluate 
this integral analytically, you may use the MATLAB function dblquad(). You can evaluate 
the second integral using the MATLAB function quad(). These routines work by evaluat-
ing the integrand function at a finite number of grid points that break up the integration 
domain into a number of non-overlapping subintervals. On each subinterval, a polynomial 
of low degree is constructed to interpolate between the grid point values. The integral of 
this local polynomial approximation over the subinterval is calculated analytically and the 
sum of these integrals on each subinterval are added together to yield the numerical value 
of the definite integral. The number of grid points is increased until the estimated error in 
the calculated integral value is smaller than some allowable tolerance. For more details, 
see section 4.2.4 of the notes. The availability of these robust, accurate methods to calcu-
late definite integrals saves us much effort in the solution of this problem.

3. The plot that you obtain should look like the following,

m n

H m n k, ,( )〈 〉 H χ η ζ, ,( )Xm χ( )Yn η( )Zk ζ( ) ζd ηd χd
1
a
---–

0

∫1
2
---–

1
2
---

∫1
2
---–

1
2
---

∫=

ζ b–<

H m n k, ,( )〈 〉 H χ η ζ, ,( )Xm χ( )Yn η( )Zk ζ( ) ζd ηd χd
b–

0

∫1
2
---–

1
2
---

∫1
2
---–

1
2
---

∫=

ζ b–>

H χ η ζ, ,( ) r χ2 η2
+=

H m n k, ,( )〈 〉 H r( )Xm χ( )Yn η( ) ηd χd
1
2
---–

1
2
---

∫1
2
---–

1
2
---

∫ Zk ζ( ) ζd
b–

0

∫=
October 18, 2002 18



FIGURE 7. Dimensionless temperature field within heating element. Slice at 

1.C. Compute the gradient of the temperature normal to the top surface as a function of  
and . Make a color contour plot of this quantity, as it is proportional to the local heat flux 
into the metal pot. Where is the flux of heat out of the heating element into the pot the 
greatest?

Integrate the normal gradient over the top surface to get a measure of the total flux into the 
metal pot. How does this value relate to the total rate of heat generated by the annular 
regions in the element?

η 0=

χ
η
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