Fall 2002. 10.34. Numerical Methods Applied to Chemical Engineering
Homework # 5. Boundary Value Problems

Assigned Friday 10/18/02. Due Friday 10/25/02

Problem 1. Green’sfunction calculation of a 1-D temperature profile

Consider the heat transfer problem outlined in the figure below. We have aslab of materia
of thickness L. On one side of the Slab isafluid at atemperature T, , . On the other isa

fluid at atemperature T; ,. These fixed temperatures set the boundary conditions on the

temperature field within the catalyst at x = 0 and x = L respectively. The slab may be con-
sidered to be infinitely long and tall, so that the only variation of temperature that we wish
to consider occursin the x direction. Within the slab are located several regionsin which
electrical resistance is used to dissipate energy as heat. Within these heat generating
regions, the rate of heat produced per unit volume is equal to a uniform specified value s

in Sl units of J/(s-m°).

We wish to calculate the temperature profile within the slab and the rate of heat transfer
per unit areato the fluids on either side. To do so, we will apply Green’s function analysis.
The derivation is outlined below. You are to perform the calculation and plot the resulting
temperature field. Then, compute the heat flux per unit area to the fluids on each side of
the slab.

heat generation regions

fluid ﬂgd
Ty Tz
B.C. #

T(0) =Ty,

ot x=L
Xt X

FIGURE 1. Geometry of 1-D heat transfer problem

First, we derive the governing differential equation for the temperature field. Let the rate
of local heat generation per unit volume be a specified function s(x) that we write as
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s(x) = SxH(x) (EQ1)

where H(x) isequal to 1 if the point x iswithin aheat generating region and is O every-
where else. The boundary value problem for the steady state temperature field is then

2
=\ d_-lz_ = s(x)
dx (EQ2)
T(0) = Ty 4 T(L) =T
A isthe thermal conductivity. To solve this boundary value problem, we will use the tech-

nique of Green’s functions outlined below. To do so, we first must convert the boundary
conditions by defining the “excess’ temperature e from the expression

T(X) = T 1+ (T =Ty 1)% +8(x) (EQ3)

In the absence of heat generation, this “excess’ temperature will be uniformly equal to
zero. We substitute this form of the temperature field into the heat equation to obtain the
following boundary value problem for the excess temperature,

2
de s(x)
- =f(x) = —
dx2 ( ) A (EQ 4)
8(0) =0 o(L) =0
This modified boundary value problem is of aform that we can solve using the Green's
function approach outlined below.

Your assignment isthe following

1.A. Using the Green’s function method outlined above, compute the temperature profile
for the following set of parameter values.

L=1
Tii=1  T,=2
x, =02 t; =01 (EQ5)
X, =07 t,=01
S=10 A=1

1.B. From this solution, compute the heat flux across each side of the dab into the sur-
rounding fluids.
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A Primer on the use of Green’sfunctions

We wish to solve a boundary value problem of the following form, where f(x) issome
known “data” function.

2

du

—— =f

ol ™ (EQ6)

u) =0 ulL) =0

For this boundary value problem, we define the Green’s function g(x, &) asthat satisfying
the related boundary value problem,

2
99 = 5(x-¢)
dx

9(0,¢) =0 g(L, &) =0

The Dirac deltafunction 5(x-¢) isa“function” that is zero everywherebut a x = ¢, and
that at that point blows up to infinity such that

(EQ7)

[oe]

[ax-5)ck = 1 €Q9

We can represent the Dirac delta function by taking the following limit,

ey =g L[ (x=8)°
o(x-¢) ollino Gﬁexp{ 202} =29

The figure below shows how the Dirac delta function is approached as we shrink the stan-
dard deviation of the normal distribution to zero. Aswe reduce o, the distribution
becomes more sharply peaked, but the area under the integral remains equal to one.
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Pr(x) = [a*sqr(2* =) * expl-x2A252)]
16 T T T T T

14? “ -
|

10+ | |

Pr{x)
o

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FIGURE 2. Dirac delta function as limit of Gaussian normal distribution as standard deviation
approaches zero

We will never have to evaluate the Dirac deltafunction, but will only use the property that
afunction f(x) defined on the domain o<x<L may be written as

L

f(x) = [T(@)o(x—&)ak (EQ 10)

To see that this equation is valid, we note the Dirac delta function is zero except at x = ¢.
We therefore can choose a very small, but non-zero, number ¢ and write thisintegral as

(x—¢) (x+¢) L
f(x) = J’ fQ)o(x—&)de + [ 1(&)o(x—&§)de+ [ T(§)o(x—&)ak
(x—¢) (x+¢)
(x—¢) (x+¢) L
() = J’ (OIOJE + [ H(E)S(x-8)de+ [ ()01
(x—¢) (x+¢) (EQ1L)
(x+¢) (x+¢)
f) = [ f(@A(x-§)de = f(x) [ d(x-&)dk
(x—¢) (x—¢)
f(x) = f(x)
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It isthis property of the Dirac delta function, that upon integration it “extracts’ the value
of afunction at a specific point, that makes it useful in the solution of boundary value
problems involving linear differential equations.

We propose that the Green’s function g(x, &) defined above can be used to express the solu-
tion to the boundary value problem as

L

u(x) = [f(&)g(x §)dg (EQ12)
0

To see that thisistrue, we substitute this trial form of the solution into the differentia
equation,

2
du
2
dx
L L

2
iff(z)g(x,z)dz = [f(8)3(x &)k
dx® 0

= f(x)

EQ 13
L . L (EQ 13)

d
f(8)|—9(x &) |d& = [f(&)5(x~&)dE
[19 522012

- 2
J’f(E){izg(x,E)—é(X—E)}dz -0
0

dx

We therefore find that we can satisfy the differential equation for all possible functions
f(x) aslong asthe Green's function satisfies the differential equation

2
49 = 5(x-¢) (EQ14)

dx

In particular, we want to find solutions to the differential equation that satisfy the bound-
ary conditions,

L L

u(0) = 0 = [f(€)g(0.&)ak u(b) =0 = [f(&)g(L. &)dt (EQ15)
0 0

Thisimplies that the Green’s function must satisfy the boundary conditions,

g9(0,¢) =0 g(L,¢) =0 (EQ 16)
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as specified in the original definition of g(x £).

The whole idea behind the use of Green’sfunctionsis that once we find the functional
form of g(x, €), we can solve the problem for any given function f(x) merely by evaluating
asingle definite integral,

L

u(x) = j f(&)a(x, &)d¢ (EQ17)
0

There are two approaches that we may use to compute the Green’s function for this prob-
lem. Thefirst is arather straight-forward method of writing the Green’s function asalin-
ear combination of the eigenfunctions of the second derivative.

1

00 =

27 g
9(x &) = % Cm(&)Xm(X) Xm(¥) = g5 sin(mmx/L) (EQ18)

m=1

We substitute this expression into the differential equation and use the fact that x,(x) isan
eigenfunction of the second derivative to obtain

[0e]

d
d—% 3 m(z)— = 8(x~¥)
. m= (EQ 19)
S Ca(®IHMT L)X m(x) = 8(x—8)
m=1
We next use the fact that sine functions are orthogonal,
L =
XnlXd= Isn(mrrx/L)sn(nTrx/L)dx = & EOTn;nn (EQ 20)

to compute the coefficient functions c,(€) . To do so, we multiply the differential equation
by x,(x) and integrate over the domain [oL] . All termsin the summation are zero except
for that with m = n, yielding the coefficient function c,(¢) .
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00 L L
S Cn(OHm/LY] {[xm(X)xn(X)d% = [8(x- )Xy ()0
0 0

m=1
[oe] L
S (&ML TR fXa 1= [B(X=E)Xp(¥)
m=1 ) 0 02D
S CaIAMVL) T8y = Xn(E)
m=1
ca(E)HTVL)T = X4(8)
L2
o(8) = —Xr:fiz

In terms of this eigenfunction expansion, the Green’s function takes the form

 XmEXmOL2

g(X1E):_Z __Z
m=1

m=1

2Lsin(mmé&/L)sin(mrmx/L)
meTe

w (EQ 22)
m°Tt

While this form of the Green’s function can be used to perform calculations, with a bit of
physical insight, we can obtain an equivalent functional form of g(x, £) that is much easier
to use. To do so, we note that since the Dirac delta function 3(x-£) isnon-zero only at

x = &£, wecanwritefor x<¢g,

42
—0(x, &) =0 (EQ 23)
dx2

x<¢

Therefore, in thisregion, the form of the Green’s function must be
9(x <&, &) = Ag(&) +Aq(&)X (EQ24)
But, we know that at x = 0, we have the boundary condition g(o, ) = 0, requiring that
9(0, &) = Ag(&) +A1(&)(0) = Ag(&) = 0 (EQ 25)
Therefore, we have determined that for x<¢ , the Green’s function must be of the form
g(x<§&, &) = A(§)x (EQ 26)

Next, we look at the region x> &, where
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d2
—9(x &) =0 (EQ27)
dx2

x>&

that implies that for this region, the Green’s function is of the form
9(x>¢&, &) = By(§) —By(&)x (EQ29)
The boundary condition that g(L, £) = 0 requires that

g(L. &) = By(§) =B, (E)L = 0

Bo(£) = By(E)L e
so that for x> ¢, the Green’sfunction is
9(x>§, &) = By (§)L—By(&)x = B1(&)(L —X) (EQ30)
We have reasoned that the Green's function must be of the functional form,
0 A(§)x,0sx<¢ 03

98 = L5 (&)(L—x), E<xsL

We now need to establish two independent relations between A, (g) and B,(¢) to specify

exactly the Green’s function. Thefirst is rather straightforward; we require that the
Green’s function be continuous at x = £. Thisyields

A€ = By(L-¢) (EQ32)

The second relation between A, (¢) and B,(Z) comesfrom abit of physical insight into how

the differential equation for the Green’s function arises. Let us say that we have an equa-
tion of the form,

2
du
dx2

= f(x) (EQ33)

This equation is obtained from a conservation equation on the quantity of u(x) where —(x)
isasourceterm. To seethat thisis so, we write abalance on u in adifferential control vol-
ume between x-ax and x+ Ax,

(x+AX)
d d ; )
d_l)J( _d_‘:( = [ (Hx)dx =—f(x)2Ax (EQ34)
X—AX X+ AX
(x=Ax)

Thefirst term on the left isthe “diffusive’ flux into the control volume at x—ax and the
second termisthe “diffusive” flux out the other side. The term on theright is the “ source’
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term and isthe rate of generation of u within the control volume. Dividing this balance by
2ax Yields the equation

dul _du
dx dx
X —AX X+AX _ .
oAx = —f(x) (EQ 35)
At ax - 0,
du du
dx dx 2
X —AX X + AX df
oAX 5 —@ (EQ 36)
and we obtain the differential equation
q 2
u
— = f(x) (EQ37)
dx

We now apply this same concept to the Green’s function equation,

2
49 = 5(x-¢) (EQ 39
dx

We form a balance for g(x, &) on asmall region surrounding the point x = &,

(€ +Ax)

d d

d_?( _d_?( = [ (Bx-)dx = -1 (EQ39)
& —Ax & +AX (£ —AX)

This suggests that the first derivative of the Green’s function is discontinuousat x = ¢ and
experiences a“jump”. On either side of x = ¢ we can compute the first derivative with
respect to x,

dg

_ dg
D= Aam O

= —B4(&) (EQ 40)
e dx 1

& +AX

We then use these results in the shell balance around x = ¢ to obtain the “jump” condition,
A1(€) +By(§) = -1 (EQ41)

The two conditions for A,(¢) and B,(Z) generated by the condition that the Green’'s func-
tion be continuous at x = ¢ and the “jump” condition are
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Ali = Bl(L—E)
A +B; = -1

These two equations are readily solved to yield

aE) =528 @ =S

The Green’s function for this problem therefore takes the simple form,

nl L—E, X

0 L
g(x. &) = 0

E—@,E<XSL

,0sx<¢&

This means that the solution to the boundary value problem,

d2
u _
— = 1(X)

dx
u0) =0 ulL) =0
Is computed very simply by taking the integral
L

U0 = [f(E)g(x E)de
0

X L

u(x) = [HE)g(x>¢, &0k + [T(§)g(x <&, &)dk
0 X

X L
() = [~ e + i) LT o
0 X

(EQ42)

(EQ43

(EQ44)

(EQ45)

(EQ46)

It ishard to find a simpler approach to solving a boundary value problem than by perform-
ing an integration with aknown Green’s function. Unfortunately, not all boundary value
problems can be solved using a Green’s function approach. Therefore, it is worthwhile to
see what it is about this particular problem that allows the Green’s function technique to

succeed.

The existence of a Green’s function for this problem is a consequence of the fact that the

differential operator, in this case the second derivative, islinear. That is,

October 18, 2002

10



2
du
2

dx (EQ47)

I:(u1+u2) = £u1+l:u2

Lu=

Therefore, if we have a“data’ function that is the sum of two terms,
f(x) = f1(x) +,(x) (EQ48)
we can write the differential equation as
Lu = Lul + Luz = f1(x) + f,5(x) (EQ49)
so that we write the solution as
u(x) = ug(x) + uy(x) (EQ 50)

where the two “contributions’ to the solutions from each data function are computed indi-
vidually.
Lu, = f,(x)  Lu, = f(x)

u,(0) =0 u,(0) =0 (EQ51)

u,(L) =0 u,(L) =0
The Green’s function formalism is an extension of thisideato the limit where we express
the data function not as summation of afinite number of contributions, but rather as an
integral (a continuos form of summation). To see how the Green’s function is reached in
this limit, let us approximate the solution to the problem by placing a grid of points sepa-

rated by a uniform distance ax. We then approximate the function f(x) by interpolating
between the function values at each point using “hat” functions (see figure below).

N
f(x) = Z f(X) Am(X) (AX) (EQ52)

The hat function for grid point x,, is defined as

11 X=X

DEMjX 1' m-1="= Xy
0
A (X) = DEI1D m+1— X (EQ53)
x <X<X
DEAXDan m m+1
E 0, otherwise
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FIGURE 3. “Hat” functions used to approximate f(x) from itsvaluesat distinct grid points

We see that this hat function has the following properties:

1. Itiszero outside of asmall interval x,,—Ax<x<x,,+Ax
2. For any grid point x,, a,(x) = 55,

3. The area under each hat function is always equal to one, but as ax - 0, the hat function
becomes more sharply peaked around x,,

4. For any value of x that isnot agrid point, the approximation for f(x) presented above
interpolates linearly between the two nearest grid points to estimate the local value of f(x)

Using the property of linearity, we write the solution as

N
u(x) = Z Uy, (X) (EQ 54)

m=1

where u,(x) iSthe solution to the boundary value problem

Lu,, = f(X,)A(X)(AX)
un(0) =0 uy(L) =0

We note that the product f(x,)(ax) is merely some number, so we define the function g, (x)
such that

(EQ55)

Un(X) = [f(Xp) (AX)] gpm(X) (EQ56)
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The boundary value problem for g, (x) iS

Ly = By(X)

(EQ57)
gn(0) =0 gn(L) =0

From the functions g,,(x) , we can compute the solution for any f(x) from the summation,

N
ux) =y f(Xm)gm(x)(AX) (EQ58)
m=1

We see that as ax - 0, the discrete grid point values x,, become the continuous variable ¢ ,
Ax - dg , and the hat functions become Dirac delta functions, a,,(x) - 3(x—£) . In thislimit,
the approximation for f(x) becomes

N L

> TXm)An(X)(AX) — [f(&)d(x—&)dE = 1(X) (EQ59)
0

m=1
The expression for the solution, obtained through the linearity property, becomes

N L

> TXm)gm()(AX) — [f(&)g(x, §)dE = u(x) (EQ 60)
m=1 0

There are many important boundary value problems that do possess thislinearity property,
and are defined on a simple enough geometry that the Green’s function can be derived
analytically. In such a case, solving the boundary value problem is very simple.

Unfortunately many important problems involve either complex geometries for which the
Green’s function itself must be computed numerically, or the differential equation is not
linear. The latter isthe typical case for problems involving both nonlinear reaction terms.
For these problems, we will use the real-space methods - such as finite differences - to be
developed in chapter 5.

October 18, 2002 13



Problem 2. Temperature distribution on a stove top

Consider the following “kitchen” transport problem. We have an electric stove top com-
prised of several heating elements. Each element contains within a ceramic matrix two
annular regions in which heat is generated by electrical resistance (see figure below).

FIGURE 4. Sove top geometry showing 2x2 grid of heating elements

The geometry of an individual heating element in shown in the figures below. The first
figure shows atop view of the geometry inthe (x,y) plane. Each of the two heat generation
regionsis described by an annular region of specified inner radius and thickness. A side
view in the second figure shows that these heat generation regions penetrate to a specified
depth d, . The thermal conductivities of the ceramic matrix and the heat generation mate-

rial are assumed to equal a common value A . Within the heat generation regions, the spec-
ified volumetric rate of heat generationis s.

We wish to calculate the temperature profile within the heat el ement. Since we are consid-
ering but a single element within a periodic array of identical copies, we employ periodic
boundary conditionsin the (x,y) plane. In the z direction, we assume that on top of the
heating element (z = 0) ametal pot has been placed containing boiling water. If the ther-
mal conductivity of the metal pot is much higher than the thermal conductivity of the
ceramic matrix, we expect that at steady state, the temperature of the upper surface will be
equal uniformly to that of boiling water, T,, (100 C under standard conditions). On the bot-

tom surface, we assume that thereis an underlying insulator layer, so that the heat flux out
the bottom is zero. Thisimplies a zero normal gradient at the bottom surface, z = -D.
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; ; heat generation material
ceramic material &

\ B.C.#2 8T/dy =0 J/

= T

B.C.#3 B.C. #4
oT/ox=0 oT/ox=0
[

y=0
w2 B.C.#18T/dy =0 x =T

FIGURE 5. Top view of heating element geometry in (x,y) plane

B.C. #6. T(xy,z=0)=T,

Z='d1 . I I E

B.C.#5.0T/oz=0

FIGURE 6. Side view of heating element showing depth profile

We can simplify the boundary conditions for this system by defining a dimensionless tem-
perature field,

9= T =T,(1+6) (EQ 61)

NI

¢ = (EQ62)

x 1 - Y_ z
L2 17 L

If we convert the governing differential equation to dimensionless form, we reduce the set
of independent system parameters to the following,
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ry/L t,/L
r,/L t,/L
a=L/D b=d;/L (EQ 63)

T

The boundary value problem, in these dimensionless variables, is

30 00 40
St T RN
BCHL  n=-3 —sxs3  -i<0<0 %:o
BC#2 n=% —%sxs% —iszso %:o
BC#3 X:—% —%sns% —(,]:'ISZSO %:O (EQ 64)
BC#4 x=% —%sns% —iszso %:o
BC#5 z=—{%1 —%st% —%gns% %:o
BC#6 7 =0 —%sxs% —%sns% 8=0

The following function “switches on” the heat generation only within the specified annu-
lar regions,

1, if (x,n,¢) iswithinannular region

H(Xx,n,{) = . EQ 65
(x.n.q) E 0. otherwise (EQ 65)

Note that the geometry of the problem is highly symmetric, so that we expect the solution
to possess the symmetry,

8(x.n,¢) = 8(=x,n. ) 8(x,n,¢) = 8(x,—. ) (EQ 66)
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Your assignment isthe following
1.A. Propose a general form for e(x,n,¢) asalinear combination

(o) (29 (29

e(X1 r]1Z) = z z z Cm, n,kxm(X)Yn(n)Zk(Z) (EQGD

m=0n=0k=0

where the functions x(x), Y,(n), and z(2) areeither sine or cosine functions that satisfy

the boundary conditions of the problem and possess the desired symmetry. Note that
cos(x) = cos(—x) and sin(x) = —sin(—x) . These sine and cosine functions are eigenfunctions of
the second derivative,

2 2
—icos(Ax) = Azcos(Ax) _d
2 2
dx dx

sn(Ax) = Asin(Ax) (EQ 68)

1.B. Substitute the general form of the dimensionless temperature profile into the govern-
ing equation, and compute the temperature profile for the following parameter values.

a= b=05

WIN

r/L =01  t/L = 005 (EQ€9)
r,/L = 0.25 t,/L = 0.05
Note that due to the linearity of the differential equation, we need solve the problem only
oncefor avalueof o = 1. Let thissolution be 6(x,n.¢:o= 1). Then, if we require the solu-

tion for other values of the heat generation rate, we need merely multiply this solution by
the desired value of ¢ to obtain the new solution,

B(x,n,¢;0) = ax6(x,n,{,0=1) (EQ70)

From your results, plot the dimensionless temperature field in the mid-planein (x, )
defined by n = 0.

Hints:

1. Usethefact that cosine and sine functions have orthogonality conditionsto calculate the
coefficientsin your expansion. For example, consider the integral

1/2
J’ cos(2mrix) cos(2nTx)dx = %6mn (EQ71)
-1/2
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We could establish this orthogonality condition analytically, probably by consulting a
table of integrals. More easily, we could check that it is valid by using the MATLAB func-
tionstrapz() or quad() to compute the value of the integral numerically for different values
of m and n. Using this latter approach, you should be able to quickly establish the orthog-
onality relations for the basis functions that you select in 2.A.

2. The values of your coefficients will be proportional to integrals of the form

1 1
> 350

[H|(m, n, k)0 = jzl ﬁj 1 HX N, O XR(X) Yn(N) 2, (4)dddn dy (EQ72)
22 a

For the annular geometry of the system, you can evaluate these integrals with little effort.
First, you may note that since there are no heat generation regions for ¢ <-b, you can
rewrite the integral as

11
> 50

CH(M 0= ) ) [ HOG Xm0 Yo(M)Z(Q) g cnax (EQ73
2 2

Next, we use the annular nature of the heat generation regions to note that for ¢>-b, the
function H(x,n,2) issolely afunction of r = Jx?+n? to write

1 1
- 0

TH|(m, n, k)0 = [Izl 1H(r)Xm(X)Yn(r])dr]dx}D’ bZk(Z)dZ} (EQ74)
_EJ_é _

At thispoint itisbest to convert thefirst integral to polar coordinates. Rather than evaluate
thisintegral analytically, you may usethe MATLAB function dblquad(). You can evaluate
the second integral using the MATLAB function quad(). These routines work by evaluat-
ing the integrand function at a finite number of grid points that break up the integration
domain into anumber of non-overlapping subintervals. On each subinterval, a polynomial
of low degree is constructed to interpolate between the grid point values. The integral of
thislocal polynomial approximation over the subinterval is calculated analytically and the
sum of these integrals on each subinterval are added together to yield the numerical value
of the definite integral. The number of grid pointsisincreased until the estimated error in
the calculated integral value is smaller than some allowable tolerance. For more details,
see section 4.2.4 of the notes. The availability of these robust, accurate methods to calcu-
late definite integral s saves us much effort in the solution of this problem.

3. The plot that you obtain should look like the following,
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theta(y,n,c), o =1, N=10

FIGURE 7. Dimensionless temperature field within heating element. Sliceat n = 0

1.C. Compute the gradient of the temperature normal to the top surface as afunction of
and n . Make acolor contour plot of this quantity, asit is proportional to the local heat flux
into the metal pot. Where is the flux of heat out of the heating element into the pot the
greatest?

Integrate the normal gradient over the top surface to get ameasure of the total flux into the
metal pot. How does this value relate to the total rate of heat generated by the annular
regionsin the element?
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