
10.34. Numerical Methods Applied to Chemical Engineering

Optional MATLAB programming warm-up exercises

NOTE : consult the on-line MATLAB tutorial for help in completing these exercises

1. Make a plot of the function

 (EQ 1)

over the range . Add labels to the x and y axes and a title.

2. Write a MATLAB function, in an m-file, that takes as input a single real number
and checks to see if it is a power of two (see log2 command). The routine should
return an integer that is 1 if the input number is a power of 2 and 0 if it is not.

To make things more interesting, you might add two optional output variables.
The first returns the closest power of 2 below the input value and the second
returns the closest power of 2 above.

As a further fluorish, modify the routine to include an optional second input argu-
ment, B. The routine then checks to see whether the first input argument is a
power of B (HINT - use the properties of the natural logarithm to calculate the
base-B logarithm).

3. van der Pol oscillator

MATLAB is well-suited to the solution of common technical problems because it
contains many built-in routines to perform common tasks. For example, one can
simulate the behavior of a system governed by a set of ordinary differential equa-
tions by marching forward in small time increments, and using the present value
of the state variables and their derivatives to predict their values at the next time
step. The built-in MATLAB function ode45 uses a Runge-Kutta method and
requires only that the user supply the initial values of the state variables, the time
span of the simulation (e.g. start and end time), the values of any fixed parame-
ters, and a routine that, given the current time and values of the state variables
and fixed parameters, returns the vector of time derivatives.

The MATLAB program below simulates the behavior of a van der Pol oscillator,
governed by the differential equation

f x() x 2π–()2

4
----------------------– 

  6x()sinexp=

π– 5π,[]
September 4, 2002 1

(EQ 2)

This second order ODE is converted to a set of two first order ODE’s by defining
the following variables

(EQ 3)

to yield

(EQ 4)

(EQ 5)

The MATLAB program below uses ode45 to simulate the behavior of this system
given the value of , the values of and at the initial time , and the time

value at which the simulation ends, . The actual MATLAB commands are in

bold print. Try running the simulation by saving this text as the m-file
simulate_van_der_Pol.m (you need not add all of the comments), and typing at
the MATLAB prompt simulate_van_der_Pol(1,[1; 0], 25);

Now try writing your own program to perform the same simulation without using
the built-in MATLAB function ode45. Given the values of and at the current

time , pick a small value of the time step and estimate the values of the state
variables at the next time step using the explicit Euler rule,

(EQ 6)

(EQ 7)

Compare the results of this simulation to those obtained from the more accurate
Runge-Kutta method. To compare the simulation results more carefully, at each
time step of the explicit Euler simulation, calculate the difference between the
explicit Euler result and the result using the Runge-Kutta method. Since the
Runge-Kutta results are reported at different times than those used in the explicit
Euler calculation, you will beed to use the MATLAB 1-D interpolation function
interp1. Try making a plot of the maximum absolute value of the difference
between the two simulations as a function of time step.

% simulate_van_der_Pol.m
%

t
2

2

d

d u λ 1 u
2

–()
td

du
– u+ 0=

y1 u y2 td
du

= =

td

dy1 f1 y1 y2,() y2= =

td

dy2 f2 y1 y2,() λ 1 y1
2

–()y2 y1–= =

λ y1 y2 t 0=

tend

y1 y2

t ∆t

y1 t ∆t+() y1 t() ∆t()f1 y1 t() y2 t(),()+=

y2 t ∆t+() y2 t() ∆t()f2 y1 t() y2 t(),()+=
September 4, 2002 2

% This MATLAB program simulates the van der Pol
% oscillator using the MATLAB function ode45().
%
% van der Pol oscillator equation :
% u’’ - \lambda*(1-u^2)*u’ + u = 0
%
% input arguments
% lambda = value of lambda parameter
% y0 = 2-D column vector with initial guess of state variables
% t_end = the end time of the simulation
%
% K. Beers. MIT ChE. 8/28/2002

function iflag_main = simulate_van_der_Pol(lambda,y0,t_end);

% This integer is set to 0 to show no successful completion.
iflag_main = 0;

% Call the built-in MATLAB routine ode45() that uses a Runge-Kutta
% algorithm to integrate the equations of motion of the oscillator from
% t = 0 to t = t_end
[t_val,y_val] = ode45(@calc_f_van_der_Pol,[0 t_end],y0,[],lambda);

% Plot the results
figure; % declare a new figure
plot(t_val,y_val(:,1));
xlabel(’t’);
ylabel(’f(t)’);
title(’Van der Pol oscillator’);

iflag_main = 1;

return;

% ----- calc_f_van_der_Pol()
function f = calc_f_van_der_Pol(t,y,lambda);

f = zeros(size(y));

f(1) = y(2);
f(2) = lambda*(1-y(1)^2)*y(2) - y(1);

return;
September 4, 2002 3

