Part I – Fundamental Principles (Taught by Professor Blankschtein)

1. Scope, Basic Concepts, and Definitions (Chapters 1 and 2)
 - Postulatory vs. historical approach.
 - System specification.
 - Properties (intensive and extensive, primitive and derived, state and path functions).
 - Boundaries (adiabatic versus diathermal, rigid versus movable, permeable versus impermeable).
 - Simple and composite systems.
 - Temperature scales.
 - Postulates I and II.

2. Energy Balance and The First Law of Thermodynamics (Chapter 3)
 - Work interactions (P-V and generalized).
 - Adiabatic work interactions and Postulate III.
 - Heat interactions and Postulate IV.
 - Closed systems.
 - Open systems.
 - Evaluation of thermodynamic-property changes.
 - Approach to problem solving.

3. Reversibility and The Second Law of Thermodynamics (Chapter 4)
 - Reversible heat engines and the conversion of heat into work.
 - Carnot efficiency, reversible and irreversible processes.
 - Interpretation of entropy, entropy balance.
 - The combined First and Second Laws of Thermodynamics for closed and open simple systems.
 - Maximum work, availability and lost work concepts.
 - Flow work.
 - Analysis of thermodynamic feasibility and efficiency.

4. The Calculus of Thermodynamics (Chapter 5)
 - Fundamental Equation in Gibbs Coordinates.
 - Extensive and intensive properties (Euler’s theorem).
 - Legendre transformations.
 - Partial derivatives of Legendre transforms.
 - Single and multiple variable Legendre transforms.
 - Reordering variables and stepdown formulae.
Part II – Classical Thermodynamics of Pure Fluids and Mixtures
(Taught by Professor Blankschtein)

1. Properties of Pure Materials (Chapter 8)
 - Gibbs free energy representation of the Fundamental Equation.
 - Generalized charts and Theorem of Corresponding States:
 - Z-compressibility factors.
 - \(f/P \) fugacity.
 - Enthalpy and entropy.
 - Equations of state:
 - Cubic form (e.g., van der Waals, Redlich-Kwong, Martin, Peng-Robinson).
 - Virial form.
 - Departure functions (real-gas state to ideal-gas state).
 - Ideal-gas state heat capacities (\(C_p^o \), \(C_v^o \)).
 - Thermodynamic diagrams.
 - Calculation of thermodynamic derived properties using PVT departure functions and equations of state and \(C_p^o \) or \(C_v^o \) data.

2. Mixtures (Chapter 9)
 - Extensive and intensive differentials.
 - Partial molar properties.
 - Generalized Gibbs-Duhem relation.
 - \(P-V-T-N \) (e.g., Redlich-Kwong and Peng-Robinson) equations of state for mixtures.
 - Ideal-gas mixtures and ideal solutions (Lewis and Randall rule).
 - Regular and athermal solution behavior.
 - Mixing and excess functions.
 - Activity and fugacity coefficients and standard states.
 - Activity-coefficient models for liquid mixtures (e.g., Margules, van Laar, Wilson, NRTL, UNIQUAC, Flory-Huggins).

3. Equilibrium (Chapter 6)
 - Classification of equilibrium states.
 - Extrema principles.
 - Thermal, mechanical, and membrane equilibrium.

4. Stability (Chapter 7)
 - Criteria of stability.
 - Stability in one-component systems.
 - Stability in binary and multicomponent mixtures.
 - Critical phenomena.
Part III – Molecular Interpretation of Thermodynamic Properties Using Statistical Mechanics (Taught by Professor Trout)

1. **Introduction to Statistical Mechanics and Ideal gas models (Chapter 10, Course Reader, & Handouts)**
 - Probability distributions, in particular Boltzmann distribution.
 - Classical versus quantum statistical mechanics and phase space.
 - Postulates of statistical mechanics.
 - Ensembles and connection to Thermodynamics.
 - Partition functions and thermodynamic quantities for idea gases.
 - Computation of thermodynamic properties from energy levels.

2. **Ising Model and Molecular Understanding of Phase Equilibria (Course Reader, & Handouts)**
 - Ising model and lattice gas model.
 - Symmetry breaking.
 - Exact solutions and Mean field theory.
 - Beyond mean field theory.
 - Solutions via computer simulations.

3. **Simulations and Equations of State (Chapter 10, Course Reader, & Handouts)**
 - Monte Carlo simulations.
 - Intermolecular forces and potentials.
 - Configurational integral.
 - Microscopic derivation of equations of state, such as the one by van der Waals.
 - Radial distribution functions.
 - Molecular dynamics simulations.
Part IV – Applications in Phase and Chemical Equilibria
(Taught by Professor Trout)

1. **Phase Equilibrium (Chapter 15)**

 - Gibbs phase rule.
 - Differential and integral approaches.
 - Gibbs phase-rule applications.
 - Liquid-vapor and liquid-liquid equilibria.
 - Solubility of solids in fluids.
 - Pressure-temperature relations (Clausius-Clapeyron equation).
 - Phase diagrams.

2. **Chemical Equilibrium (Chapter 16)**

 - Conservation relationships.
 - Stoichiometric and non-stoichiometric formulations.
 - Equilibrium constants.
 - Standard states.
 - A statistical mechanical and quantum mechanical approach to chemical equilibria.
 - Gibbs phase rule for chemically-reacting systems.
 - Le Châtelier’s principle.