Microfluidics to Perform Hazardous Gas Phase Reactions

10.491 Presentation
Professor Jensen
Miyasato, Rogers, Smith, Spooner
3/5/01
Rationale for μscale Study

• Problem
 – oxidation reactions are exothermic, explosive
 – complete combustion products have no value

• Objective
 – construct microreactor
 • improved safety through point-of-use

• Scale Up
 – improved process control, rapid implementation
Rationale for μscale Study, Cont.

• Size does Matter
 – smaller channels = smaller concentrations
 – length dimension is less than quenching distance for H₂ flame
 – enhanced process control
 • faster response time b/c surface/volume leads to efficient heat and mass transfer

• Collect data on toxic gas phase reactions
Fabrication of the Device

• Rxn: \(\text{H}_2 (g) + \text{O}_2 (g) = \text{H}_2\text{O} (g) \) \((\Delta H = -57.9 \text{ kcal/mol})\)

• Catalyst: \(\text{Al}_2\text{O}_3/\text{Pt} \) Deposition
 - \(\text{Al}_2\text{O}_3 \) deposited via Atmospheric CVD
 - Pt deposited on \(\text{Al}_2\text{O}_3 \) via wet impregnation
 @ high and low loadings

• Reactor System Design
 - Mass flow controllers, One-way valve, shut-off valves, cold trap
Microreactor/Heat Exchanger

Smaller Channel Sizes (70 µm x 100 µm) with N₂ coolant

Larger Channel Sizes (140 µm x 200 µm) with Pt/Al₂O₃ catalyst

- Stainless Steel Plates w/micromachined channels
- Stacked with 90° rotations
- Diffusion bonded
Design Concepts

- Transport Phenomena
 - Heat Transfer
 - Cross-flow heat exchangers
 - Control of reaction temperature
 - Mass Transfer
 - Concentration of reactants in nitrogen diluent
 - Mixing
- Heterogeneous catalyst options
Why Miniaturization?

- **Advantages**
 - Runaway scenario eliminated
 - More efficient heat exchange
 - Improved selectivity

- **Disadvantages**
 - Difficult to collect data
 - Equipment not readily available
 - Low production rate
Results of Study

- Concentration determines outlet gas temperature
- Low-loading of catalyst requires heaters to initiate reaction
- Induction period reduced in successive runs
- Safe operation under explosive conditions
Areas for Improvement

• Micromixers
 – Multilamination
 • $t \propto \frac{d_{sh}^2}{D}$
 – t is mixing time, d_{sh} is width of laminar sheets, D is diffusion coefficient
 • Sinusoidal channels increase mixing area
 – Use multiple mixers in parallel
Areas for Improvement

• Heat Exchangers
 – Increase heat transfer area (diameter of coolant tubes)
 – Change coolant (increase heat capacity)
 – Change inlet temperature of coolant

• GC at end of reactor
 – Accurately determine conversion
Areas for Improvement

- Removable foils
 - Direct analysis of Pt/Alumina support
- Alumina deposition on removable foils
 - Increase response time of foils (lower heat capacity and increase reactive surface area)
 - Mimic conditions in normal reactor
Contribution of Study

- Establishes capability of safe partial oxidation for research purposes
- Provides background for further fuel cell applications
- Provides design of microfluidic device upon which better devices could be built
References