10.420 / 10.520

Problem Set \#4

1. Consider a molecule with a geometrical shape approximating a flat triangle.
a) Determine the number of actual and potential favorable packing forces for the illustrated 4 -mer and 16 -mer. Assume that each edge-wise interaction with another molecule is worth $\alpha \mathrm{kT} / 3$ per molecule.

b) Provide the equations that generalize these forces for an n-mer.
c) For the n-mer, derive and expression for μ_{0}^{N} that is a function of μ_{0}^{∞} and N .
2. Consider a molecule that "self-assembles" into a rod at $25^{\circ} \mathrm{C}$ with an interaction energy between subunits of $\alpha \mathrm{kT}=24.75 \mathrm{~kJ} / \mathrm{mol}(10 \mathrm{kT})$.
a) Produce plots of X_{N} vs. N for total concentrations, C , of $0.01 \mathrm{mM}, 1 \mathrm{mM}$, and 10 mM for $\mathrm{N}=1$ to $\mathrm{N}=25$. (hint: you will need eqns 16.18 and 16.19 in your Israelachvili handout and/or lecture notes).
b) Determine the nalue of N where X_{N} reaches a maximum for total concentrations, C , of $0.1 \mathrm{mM}, 1 \mathrm{mM}, 10 \mathrm{mM}, 100 \mathrm{mM}$, and 1 M .
c) $\quad \mathrm{N}_{\text {max }}$, the value of N where X_{N} reaches a maximum, is a function of the concentration of C. Plot $\log \left(\mathrm{N}_{\max }\right)$ vs. $\log (\mathrm{C})$ and determine the relationship between these two parameters. In your analysis, plot all values, but only use values of $\mathrm{N}_{\max }>3$
3. Provide a physical (P) and/or molecular (M) reason for the following observations. Molecular (M) rationales should include a rough figure.
a) Hexadecane wets glass (P).
b) Hexadecane containing stearic acid, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CO}_{2} \mathrm{H}$, does not wet glass (M).
c) Addition of small amounts of sodium dodecyl sulfate (SDS) increases the spreading of water on polyethylene (P / M).
d) Continued adition of SDS to water begins to have no effect on the spreading nature of water on polyethylene (M).
e) The contact angle for a drop of rainwater on the hood of a car is greater during a falling rain than afterwards (P).
4. One method for measuring surface tension is to use a U-tube with a smaller radius on one side and a larger radius on the other. In such a system, a liquid that wets glass was determined to have a $\Delta \mathrm{h}$ of 19 mm between the levels of the two meniscuses in the U-tube.
a) Draw the U-tube and liquid identifying $\Delta \mathrm{h}$ and the two radii.
b) If the radii are 1 mm and 10 mm , and ρ is $950 \mathrm{~kg} / \mathrm{m}^{3}$, determine the surface tension of the liquid.
5. a) Given the surface tensions of heptane ($20.14 \mathrm{dyn} / \mathrm{cm}$) and diethylene glycol (30.9 dyn $/ \mathrm{cm}$), calculate the works of cohesions for these solvents. The work of cohesion is the energy ($\mathrm{erg} / \mathrm{cm}^{2}$) required to separate one body of liquid $/ \mathrm{material}$ into two. If two $1 \mu \mathrm{~L}$ drops of heptane that are suspended in air combine to form one $2 \mu \mathrm{~L}$ drop, estimate the energy gain $\left(\mathrm{erg} / \mathrm{cm}^{3}\right)$ for this process and a temperature rise for the heptane.
b) Given the interfacial tension of heptane-diethylene glycol ($10.6 \mathrm{dyn} / \mathrm{cm}$), calculate the work of adhesion for the heptane-diethylene glycol interface.
6. a) A fabric is made of wool fibers of individual diameter $20 \mu \mathrm{~m}$ and density of 1.3 $\mathrm{g} / \mathrm{cm}^{3}$. The contact angle for water on a single fiber is 120°. Calculate the contact angle of water on fabric woven so that its bulk density is $0.8 \mathrm{~g} / \mathrm{cm}^{3}$.
b) If the fibers are chemically modified so that the contact angle of water on the individual fiber is 60°, what would be the contact angle on the above woven fabric?
