
10.420 / 10.520
Problem Set #4/Solutions

1. Consider a molecule with a geometrical shape approximating a flat triangle.

a) Determine the number of actual and potential favorable packing forces for the
illustrated 4-mer and 16-mer. Assume that each edge-wise interaction with another
molecule is worth αkT/3 per molecule.

         

For the geometrical determination of packing  forces, all interactions are double counted.
For example, in a system A--B there are two interactions:  one for A interacting with B,
and one for B interacting with A.

Consider the 4--mer (a, b, c, d). Each molecule has 3 possible interactions, thus for the
four molecules combined there are 12 possible interactions.  From these possible
interactions there are 6 actual interactions: a--b, b--a, b--c, c--b, b--d, d--b.  The actual
interactions can also be computed by subtracting the total number of exterior walls from
the total potential interactions:

12 potential interactions - 6 interacting walls = 6 actual interactions

On a per molecule basis, there are 6 interactions divided by 4 molecules or 1.5
interactions/ molecule.

Now, consider that each edgewise interaction is worth -1/3 αKT per molecule.
Thus for a 4--mer

(1.5 Molecules)(-1/3 αKT) = -0.5 αKT/ molecule

For a 16--mer, there are (16 x 3 = ) 48 total potential interactions and a total of 12
exterior walls, thus there are (48 - 12 = ) 36 actual interactions. One a per molecule basis
there are (36/ 16 = ) 2.25 interactions/ molecule.  Thus the force per molecule is:

2.25 (-1/3  αKT) = -0.75 αKT/  molecule



b) Provide the equations that generalize these forces for an n-mer.
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c) For the n-mer, derive and expression for 
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µ0
N  that is a function of 
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Δµ = µ0
N – µ0

1 = αKT(1/N1/2 –1)

We can think of Δµ as the difference in standard state chemical potential between an
n-mer and a monomer.  Thus rewriting, we get

µ0
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1 + αKT(1/N1/2 –1)

For N = ∞, we get
µ0
∞ = µ0

1 - αKT

thus if we subtract the two equations we have

µ0
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2. Consider a molecule that "self-assembles" into a rod at 25 °C with an interaction energy
between subunits of αkT = 24.75 kJ/mol (10 kT).

a) Produce plots of XN vs. N for total concentrations, C, of 0.01 mM, 1 mM, and 10 mM
for N = 1 to N = 25. (hint: you will need eqns 16.18 and 16.19 in your Israelachvili
handout and/or lecture notes).

The equation from lecture (χN = N (1 – 1/(C eα))N e-α) is not applicable here since C
eα must be >>1 for it to give accurate results.  Instead, we’ll use

χN = N (χ1 eα)
N e-α

In order to use this, we must first calculate c1 from C = χ1/ (1 – χ1 eα)
2.  This can be

rearranged to give

C e2α χ1
2 – (2Ceα + 1) χ1 + C = 0

We can solve the quadratic above to get

€ 

χ1 =
(1+ 2Ceα ) − 1+ 4Ceα

2Ce2α

In this case we use the negative root as the positive root leads to unrealistic
concentrations.  Now that we have χ1  we can compute χN  from the previously given
equation.

The plot shows the values of χN as a function of N for three different concentrations.
From these plots, we see that the value where χN reaches a maximum, Nmax, increases
with the concentration, as we would anticipate.  For example, one would form more
150-mers at greater concentrations than at lower concentrations.



b) Determine the nalue of N where XN reaches a maximum for total concentrations, C,
of 0.1 mM, 1 mM, 10 mM, 100 mM, and 1 M.

The trend in Nmax is additionally illustrated if we plot Nmax as a function of
concentration on a log-log graph. C [0.0001, 0.001, 0.01, 0.1, 1], Nmax [2, 5, 15, 47, 148]

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

0 5 10 15 20 25 30

10 mM 1 mM 10 uM

 

Nmax = 139.96x0.4712

R2 = 0.9982

1

10

100

1000

0.0001 0.001 0.01 0.1 1

Concentration (M)

N
m

ax



c) Nmax, the value of N where XN reaches a maximum, is a function of the concentration
of C.  Plot log(Nmax) vs. log(C) and determine the relationship between these two
parameters. In your analysis, plot all values, but only use values of Nmax > 3.

Solution given above.

3. Provide a physical (P) and/or molecular (M) reason for the following observations.
Molecular (M) rationales should include a rough figure.

a) Hexadecane wets glass (P).

Glass is a fairly high energy surface (γsv = high), while hexadecane is a low γLV liquid
with dispersive interactions.

cos θ = ( γsv  -  γsL)/ γLV

thus as cos θ  increases, θ  decreases.

b) Hexadecane containing stearic acid, CH3(CH2)16CO2H, does not wet glass (M).

γsL is increased due to polar functionalities migrating to the glass-liquid interface,
which increases theta.  Interface now looks more like water/glass than hexadecane/
glass.

c) Addition of small amounts of sodium dodecyl sulfate (SDS) increases the spreading
of water on polyethylene (P/M).

Addition of SDS reduced γLV and γsL by replacing water with lower energy
hydrocarbons at the interface.  Lower γLV and γsL decreases theta.

d) Continued adition of SDS to water begins to have no effect on the spreading nature of
water on polyethylene (M).

Further addition of SDS raises us over the CMC, so no further benefit is achieved.

e) The contact angle for a drop of rainwater on the hood of a car is greater during a
falling rain than afterwards (P).
During rain, the drops are growing (i.e., advancing) due to additional water added to
the drops.  Following a rain, when the sun comes out, the drops begin to evaporate
and recede on the car’s surface.  Advancing angles are greater than receding angles.

All real surfaces are heterogeneous.  Liquid drops, upon advancing, move past the
high energy patches and hold up on the low energy patches.  Upon receding, liquid
drops hold up on the high energy patches.

low energy high energy low energy high energy low energy



4. One method for measuring surface tension is to use a U-tube with a smaller radius on one
side and a larger radius on the other.  In such a system, a liquid that wets glass was
determined to have a Δh of 19 mm between the levels of the two meniscuses in the U-tube.

a) Draw the U-tube and liquid identifying Δh and the two radii.

b) If the radii are 1 mm and 10 mm, and ρ is 950 kg/m3, determine the surface tension of
the liquid.

Patm – Psurf = 2γ/ Ri

Applying the equation to each surface, and the subtracting them leads to

PA – PB = 2γ (1/R1 – 1/R2) = ρ g Δh
γ = ρ g Δh/ [2(1/R1 – 1/R2)] = 0.0983 N/ m

5. a)      Given the surface tensions of heptane (20.14 dyn/cm) and diethylene glycol (30.9
dyn/cm), calculate the works of cohesions for these solvents.  The work of cohesion is the
energy (erg/cm2) required to separate one body of liquid/material into two.  If two 1 µL
drops of heptane that are suspended in air combine to form one 2 µL drop, estimate the
energy gain (erg/cm3) for this process and a temperature rise for the heptane..

WH = 2 γH = 2 (20.14 dyn/ cm) = 40.28 dyn/ cm

WDG = 2 γD = 2 (30.9 dyn/ cm) = 61.80 dyn/ cm

The energy change for two heptane drops comng together can be calculated as the
difference between twice the energy change of a 1 µL drop and once the change in energy
of a 2 µL drop.  Once the work is found, the temperature change corresponding to the
change in energy can be calculated.

ΔE = 2(WH SA1) - WH SA2 = WH (2SA1 – SA2) =

      = 8 π (3/ 4π)2/3(20.14 mJ/ m2)[2(1 x 10-9 m3)2/3 – (2 x 10-9 m3)2/3] = 8.04 x 10-5 mJ

or 4.02 x 10-5 J/ mL

R1 R2

Δh



ΔT = ΔE/ (ρ V2 Cp)

= (8.04 x 10-8 J)(0.1 kg/ mol)/ [(682 kg/ m3)(2 x 10-9 m3)(230 J/ mol/ L)] = 2.56 x 10-5 K

 b)      Given the interfacial tension of heptane-diethylene glycol (10.6 dyn/cm), calculate
the work of adhesion for the heptane-diethylene glycol interface.

WHD = γH + γD – γHD = (20.14 + 30.9 – 10.6)dyn/ cm = 40.44 dyn/ cm

6. a)      A fabric is made of wool fibers of individual diameter 20 µm and density of 1.3
g/cm3.  The contact angle for water on a single fiber is 120°.  Calculate the contact angle of
water on fabric woven so that its bulk density is 0.8 g/cm3.

Rearrange the Cassie Equation to get
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Substituting values and solving for theta gives θfab = 133.8 °.

b)      If the fibers are chemically modified so that the contact angle of water on the
individual fiber is 60°, what would be the contact angle on the above woven fabric?

Substituting values and solving for theta using 60° gives θfab = 94.4°


