I 0.555 Bioinformatics

Principles, Method, Applications

Inorganic vs Organic Compounds

INORGANIC COMPOUNDS

thermostable
mostly ionic
few

ORGANIC COMPOUNDS

low melting points
molecular (bigger) mostly made of $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$
many (essentially due to C's ability to form compounds with other substances and itself)

Chemical Bonds

Metallic (electrons are free-flowing in the crystal of metals)

Metals: characterized by thermal/electric conductivity, the ability to be "squeezed" and "pulled," release electrons when heated or when hit by light of appropriate frequency

Covalent bonds

Non-Covalent bonds

Covalent Bonds

Covalent (electrons are shared)
between non-metals / some times between non-metal and metal
Non-polar
participating atoms have approximately the same atomic number
Polar
participating atoms have different atomic number
Characteristics of compounds built of covalent bonds: gas, liquid, solid

Non-Covalent Bonds

Ionic (electrons are donated/accepted) between metal and non-metal (or group of non-metals)

Characteristics of compounds built of ionic bonds:
solid in room T
high melting points
when melted they can be electrolyzed (proving ionic nature)

Non-Covalent Bonds

Hydrogen bonds: relatively weak bonds, formed between H (participating in a dipolar covalent bond) and a more electronegative element (F, O, N) the strongest are those where D-H-A are in a straight line
van der Waals interactions: bonds between the transient dipoles caused by momentary random fluctuations in the electron distribution of the participating atoms (covalent bonds are shorter than "van der Waals bonds")

Water As A Solvent

\downarrow the water molecule is polar
$_$polar molecules are water soluble
\beth opposite is true of non-polar
\perp hydrogen bonding makes for highly-cohesive water and results in

- high surface tension
- high specific heat
- high boiling point
\perp highly polar water is beneficial for the cell by forcing non-polar substances to aggregate and remain together (e.g. non-polar lipids that are contained in the membranes)

Pasteur's Experiment

(c)

Flask tipped so microorganism-laden dust contacts sterile liquid

Figure 1.21 Pasteur's experiment with the swan-necked flask. (a) Sterilizing the contents of the flask. (b) If the flask remains upright, no microbial growth occurs. (c) If microorganisms trapped in the neck reach the sterile liquid, they grow rapidly.

Figure from: Brock Biology of Microorganisms Madigan/Martinko/Paiker ppo22

The Hallmarks Of A Cell

\lrcorner self feeding
\lrcorner self replicating / growing
\lrcorner able to differentiate
\lrcorner able to send/receive signals through chemical mechanisms
\lrcorner evolves

The First Cell?

」Oparin/Haldane ideas $\left(\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2}\right)-1920$

」Stan Miller's Experiment (1953)

4 Figure 26-2 The apparatus used by Stanley Miller to simulate prebiotic organic synthesis. [See S. L. Miller, 1988, Cold Spring Harbor Symp. Quant. Biol. 52:17.]

」aggregates / organization / feeding

\perp

$$
\begin{gathered}
\text { solar energy } \\
6 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O} \stackrel{+--->}{->} \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{OH})_{6}+6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{O}_{2}
\end{gathered}
$$

Endosymbiotic Theory

Darwin's Ideas About Evolutions

\rfloor organisms have the tendency to multiply from one generation to the next
\downarrow although the members of a species tend to multiply their number remains fairly constant from one generation to the next
\beth organisms compete among themselves to maintain their numbers
\downarrow within a species there is variations; variations are external but also pertain to the organism's survival abilities
\perp within a species some organisms are favored over other and survive
\downarrow beneficial characteristics of some organisms accumulate over time eventually leading to the creation of hew species different from the original

Modern Ideas About Evolutions

\perp mutation: the enabling agent

- natural selection
\perp genetic isolation (population dynamics)
\lrcorner geography
\perp ecology
」 reproductive incompatibility

Milestone Experiments

- Griffith's experiment (1928)
- 3 serotypes for S. pneumoniae: I, II and III
- 2 forms: S (smooth/virulent) R (rough/harmless)
- IS -> IR

mouse infected by IS -> dead mouse infected by IIR -> alive mouse infected by 'heat killed IS' -> alive BUT mouse infected by IIR and 'heat killed IS' -> dead

- the "transforming principle"

Milestone Experiments (cont.)

- Avery's experiment (1944)
- used 'heat killed IS'

BUT after processing

- with PROTEase .> mouse dead
- with RNAase .> mouse dead
- with DNAase $\quad>$ mouse ALIVE!
\rfloor so the "transforming principle" is DNA!

Milestone Experiments (cont.)

- Lederberg/Tatum experiments (1946)
- Cavalli-Sforza, Jacob, and others

$$
\text { E.coli } \mathrm{F}^{+} \xrightarrow{\text { flow }} \text { E.coli } \mathrm{F}^{-}
$$

」culprit was shown to be the 95 Kb " F plâsmid" that codes for 30 genes

Milestone Experiments (cont.)

- Chargaff's base ratios (I945-50)
- used different tissues
- used different organisms
- in all cases:

$$
A=T \text { and } G=C
$$

Nucleic Acids

Bases

Polymerization

(5' end)

(3' end)
and pairing...

The End Result

"The results suggest a helical structure... containing probably 2 , 3 , or 4 co-axial nucleic acid chains per helical unit, and having the phosphate group on the outside."

From a report written by Rosalind Franklin in February 1952, a year before Watson and Crick proposed the double helix structure.

How Big Is Big?

Species	Size	Domain b. Coli
S.cerevisiae		eukaryotes Wheat
Insects	eukaryotes	
D. melanogaster		eukaryotes
M. janaschii	eukaryotes	
Fern	archaea	
Fish	eukaryotes	
Moluscs	eukaryotes	
H. sapiens	eukaryotes	
Maize	eukaryotes	
Salamander	eukaryotes	
Mammals	eukaryotes	
Nematodes	eukaryotes	
Flowering Plants	eukaryotes	
Fungi	eukaryotes	

How Big Is Big? (cont.)

Species S		Size	Domain
M. janaschii		1,700,000	archaea
E. Coli		4, 000,000	bacteria
Yeast		20,000,000	eukaryotes
Fruit fly		165,000,000	eukaryotes
Fungi	9,400,000 to	175,000,000	eukaryotes
Nematodes	75,000,000 to	620,000,000	eukaryotes
H. sapiens		$3,000,000,000$	eukaryotes
Fern	600,000,000 to	4,050,000,000	eukaryotes
Moluscs	375,000,000 to	$5,100,000,000$	eukaryotes
Mammals	2,350,000,000 to	$5,550,000,000$	eukaryotes
Fish	650,000,000 to	6, 950,000,000	eukaryotes
Insects Maize	47,000,000 to	12,000,000,000	eukaryotes
		15,000,000,000	eukaryotes
		18,000,000,	0 eukaryotes
$\underset{\substack{\text { ¢ }}}{\text { ¢ }}$ Salamander		90, 000,000,000	eukaryotes
Flower Pla	ts $5,000,000$ to	120,000,000,000	eukaryotes

Example Prokaryotic Cell

Prokaryotic Cell Shape

Chapter 3 Cell Biology

Rod

Spirochete
ค
Isidore Rigoutsos / Lecture 1 / Feb. 1,
2000

Budding and appendaged bacteria

Filamentous
Figure 3.9 Representative cell shapes (morphology) in prokaryotes. Next to each drawing is a phase photomicrograph showing an example of that morphology. Organisms are coccus, Thiocapsa roseopersicina (diameter of a single cell $=1.5 \mu \mathrm{~m}$); rod, Desulfuromonas acetoxidans (diameter $=1$ $\mu \mathrm{m}$); spirillum, Rhodospirillum rubrum (diameter $=1 \mu \mathrm{~m}$); spirochete, Spirochaeta stenostrepta (diameter $=0.25 \mu \mathrm{~m}$); budding and appendaged, Rhodomicrobium vannielii (diameter $=$ $1.2 \mu \mathrm{~m}$); filamentous, Chloroflexus aurantiacus (diameter $=$ ($8 \ldots \mathrm{~m}$)

All Sorts Of Variations

Organism	Linear Chromosome	Circular Chromosome	Linear Plasmid	Circular Plasmid
Agrobacterium tumefaciens C58	1	1		2
Bacillus cereus F0836 76		1		1
Brucelia melitensis		2		
Leptospira interrogans		1		1
Rhizobium meliloti		1		2
Rhodobacter sphaeroides		2		
Rhodococcus facians	1		1	
Streptomyces ambofaciens	1			
Streptomyces lividans 66	1		>1	
S. cerevisiae	16			
D. melanogaster	4			
H. Sapiens	23			
Maize	10			
Salamander	12			

