10.555

Bioinformatics: Principles, Methods and Applications

MIT, Spring term, 2003

Lecture 7:

- Using sequence analysis tools to solve problems
- Physiology: Definitions and measurements at the cellular, molecular and organismal levels

10.555 Solving sequence problems

<u>Problem:</u> Discover primary sequence features that are critical for a particular gene function

- Promoter binding sites
- Enhancers
- Transcription factors
- Directing proteins to specific pathways (secretion)
- Endowing proteins with a particular property
- Unknown genes

How do we characterize the sequences we seek?

These sequences,

- May be over-represented
- Are very different and so they can be distinguished from the background noise
- Look at databases (Transfac, regulons, etc.)
- Do smart experiments to screen some of these sequences (transcriptional studies, other)

Be careful with "obvious" things

For example, in eukaryotes:

- Regulatory sequences may be located quite far from the corresponding coding region, upstream or downstream
- Need not be in the same orientation as the coding sequence
- There can be great variability in the binding sites of a single factor (not well understood)

After searching literature and working with databases you may find

- Most known sites lie within 800bp upstream of structural genes
- Number of well conserved bases in the sites of a single tfactor is typically 6-8
- There are 0-11 wild-cards in the middle

e.g. AGGN⁰⁻¹¹CGC

- From a database: the above description matches 70% of their consensus motifs
- Size of known sites: 8 50 (median 17)
- Known sites are randomly located in upstream regions
- Poly A's and poly T's are over-represented (A,T:30%, G,C: 20%)

The Overall Scheme

Physiology

Select sequences to do pattern discovery

All genes in genome

- Computationally intensive
- Get a lot of junk

Clusters of genes sharing property related to the property investigated

Finding Patterns - Teiresias

- I/w/k
 - − I -> 6 to 8

CTT....A.TG

- w -> 17 to 19
- k -> ?
- Heuristic approach (lot of overlaps)
 - Specify k, find all patterns >=k
- Top down approach (avoids overlaps, but may also lose some patterns)
 - Find all patterns with maximal support
 - Collect them, mask them
 - Drop support and repeat

Statistical Significance Test

10.555-Bioinformatics

Lecture 7: Sequence recap. Physiology First Question: *Does a Short DNA Stretch Come from a CpG Island?*

Table of Transition Probabilities for CpG Islands				Table of Transition Probabilities for Regions with no CpG Islands					
Model	Α	С	G	Т	Model	A	С	G	Т
A	.180	.274	.426	.120 = 1	Ā	.300	.205	.285	.210
С	.171	.368	.274	.188 = 1	С	.322	.298	.078	.302
G	.161	.339	.375	.125 = 1	G	.248	.246	.298	.208
Т	.079	.355	.384	.182 = 1	Т	.177	.239	.292	.292
α 1 1	1 -		1 1		1 •				

Calculate the Log-Odds ratio for a chain *x*:

$$\begin{split} S(x) = \log_2 \left\{ \frac{[P(x/model+]/[P(x/model-]]]}{\sum_i \log_2 \left\{ a^+_{x(i-1)x(i)} / a^-_{x(i-1)x(i)} \right\}} = \\ &= \sum_i \log_2 \beta_{x(i-1)x(i)} \\ Scores S(x) \ allow \ discrimination \ of \ a \ model \ (+) \ against \ another \ (-) \end{split} \end{split}$$

First Question: Does a Short DNA Stretch Come from a CpG Island?

Likelihood Ratios

β	А	С	G	Т
A	-0.740	0.419	0.580	-0.803
C	-0.913	0.302	1.812	-0.685
G	-0.624	0.461	0.331	-0.730
Т	-1.169	0.573	0.393	-0.679

<u>Problem:</u> Two models, M_1 and M_2 can be compared by comparing their probabilities $P(M_1/D)$ and $P(M_2/D)$. The *best* model *in its class* is found by determining the set of parameters w maximizing the posterior probability p(M/D), or

Min(-log P(M/D) = -log P(D/M) - log P(M) + log P(D)

This is called *MAP estimation* (Maximum *a posteriori*)

P(D) is a normalizing constant independent of optimization. If the prior P(M) is uniform over all models then the above problem is reduced to the following *Maximum Likelihood (ML)* maximization (*ML estimation*):

Min (-log P(D/M)

10.555-Bioinformatics

Lecture 7: Sequence recap. Physiology **Case study: Find transcription factor**

- It regulates 9 genes
- Database lists binding sites for each gene

SCPD database - GCN4

GAGTCA

Get regulated genes Get		Get sites	Get consensus	Get matrix	Get affinity data		
Get genomewise distribution		ution	Sort by copy No	Sort by function category			
> Y	BR248C	AAGAGTO	AG				
>Y	BR248C	TTGAGTCAT					
>Y	CLO3OC	TGACTA					
>Y	CLO3OC	TGACTC					
>Y	CLO3OC	ACAGTGACTCACGTTT					
> Y	CLO3OC	TGACTC CAGTCA ATGATTCAT					
> Y	CLO3OC			D	enorted Co	neoneue _TGA T	
> Y	DR354W			Г		nachaua – i GA. I	
> Y	DR354W	TTGACTO	тс				
>Y	DR354W	ATGACTA	AT				
>Y	ERO86W	TGAGTG AAGTCA					
>Y	ERO86W						
>Y	ERO86W	GAGTCA					
>Y	MR108W	TGATTC					
>Y	>YMR300C TTGACTCTT						
>Y	>YMR300C ATGACTGCT						
>Y	>YMR300C ATGAATAAT						
>Y	>YOLO58W TGACTCA						
>Y	>YOLO58W GAGTCAT						
>Y	OL140W	TGACTCA					
>Y	OR202W	TGACTC					
>Y	>YOR2O2W ATGACTCTT						
>Y	>YOR2O2W TTACTC						
>Y	OR202W	TGACGA					
>Y	OR202W	AAGTCA					
>Y	OR202W	TAGTCA					

10.555-Bioinformatics

>YOR2O2W

Case study: Find transcription factor

- It regulates 9 genes
- Database lists binding sites for each gene
- Teiresias: 5 / 16 / 7 parameters
- Found ~23000 patterns
- Developed statistical model: 3rd order Markov for randomly distributed sequences
- Found ~2,000 motives with p<0.01
- No poly A's or poly T's
- Pattern closest to the consensus (TGA.T.) had p value of 0.003

Defining and understanding Physiology

PHYSIO - LOGY

Physical state Logos = Subject of inquiry/expertise

- Describe the state of living cells and organisms
- Understand the mechanisms by which homeostasis is achieved in organisms

Controlling blood sugar level

10.555-Bioinformatics

Lecture 7: Sequence recap. Physiology

HEPATIC INSULIN RESISTANCE, POOR RESPONSE TO INCREASED PLASMA GLUCOSE

HPERGLYCEMIA VIA INCREASED PEPCK GENE EXPRESSION

HPERGLYCEMIA VIA DECREASED ACETYL COA CARBOXYLASE & MALONYL COA

Methods depend on available measurements

Methods depend on measurements available

- **B.** Systems that are not so well understood
- Different approaches are required
- Makes no sense to pursue system description at ultimate level of detail

Two broad categories of systems:

- Cells
- Tissues and whole organisms

Where do we study cell physiology? Bioreactors: Continuous, batch and fed-batch

- Dilution Rate, D=F/V
- Indene Air Feed Concentration

Bioreactor balances

See notes

Bioreactor balances: Summary

Remember goal: Study physiology of cells

This means develop a system and protocol to allow the measurement of important physiological variables:

Specific growth rate: μ (h⁻¹) Specific rate of substrate uptake: q_s (g glc/g cells * h) Specific secretion rates: q_p (g of P/g cells * h)

Similarly for other measurable extracellular metabolites

These variables provide little intracellular insight!

Intracellular measurements

Metabolite measurements

- * Concentrations
- * Isotopic tracer distributions (using labeled substrates)
 - ¹³C enrichment of specific metabolite carbons (NMR)
 - Mass isotopomers (GC-MS)
 - Radioisotopes

* Proteins

- * Specific proteins
- * Protein profiles (proteomics)
- Modified protein fractions (phosphorylated, glycosylated, etc.)

* mRNA transcripts (DNA microarrays)

Use of measurements

***** Reporters of intracellular state

In conjunction with models

- * Predictive
- * Descriptive
 - Calculation of informative parameters

This use requires additional knowledge, usually of mechanistic nature. Such knowledge is more readily available in cellular systems

* Use as profiles characteristic of physiological states (molecular physiology)