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10.555
Bioinformatics: Principles, 
Methods and Applications

MIT, Spring term, 2003 

Lecture 7:

• Using sequence analysis tools to solve problems

• Physiology: Definitions and measurements at the 
cellular, molecular and organismal levels
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10.555
Solving sequence problems

Problem: Discover primary sequence features that 
are critical for a particular gene function

• Promoter binding sites
• Enhancers
• Transcription factors
• Directing proteins to specific pathways (secretion)
• Endowing proteins with a particular property
• Unknown genes
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How do we characterize the sequences 
we seek?

These sequences, 

– May be over-represented 
– Are very different and so they can be 

distinguished from the background noise
– Look at databases (Transfac, regulons, etc.)
– Do smart experiments to screen some of 

these sequences (transcriptional studies, 
other)
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Be careful with “obvious” things

For example, in eukaryotes:

• Regulatory sequences may be located quite far from the 
corresponding coding region, upstream or 
downstream

• Need not be in the same orientation as the coding 
sequence

• There can be great variability in the binding sites of a 
single factor (not well understood)
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After searching literature and working 
with databases you may find

• Most known sites lie within 800bp upstream of structural 
genes

• Number of well conserved bases in the sites of a single t-
factor is typically 6-8

• There are 0-11 wild-cards in the middle
e.g. AGGN0-11CGC

• From a database: the above description matches 70% of 
their consensus motifs

• Size of known sites: 8 – 50 (median 17)
• Known sites are randomly located in upstream regions
• Poly A’s and poly T’s are over-represented (A,T:30%, 

G,C: 20%)
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The Overall Scheme

AATCTGCTGATACATA
TGATAGCTAGATATAG
TGATACATGATACTTT
AATCTGCTGATACATA
AATCTGCTGATACATA
TGTACATATACCATAA

Upstream regions

Mask out low-
complexity regions

AATCxxxxGATACATA
TGATAGCTAGATATAG
xxxTACATGATACTTT
AATCTGCTxxxxCATA
AATCTGCTGATACATA
TGTACATxxxCCATAA

Pattern discovery
Teiresias

l/w/k

AA.TGA.G

A.T.GG..

T.GCGT.T

TGA.T.AC

AT.GT..A

GC..G..A

CGCT.A

CT.A.GC

….

…

….

Statistical Test using

Markov model
AA.TGA.G

A.T.GG..

T.GCGT.T

Significant patterns
Significance against 

the background noise
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Select sequences to do pattern 
discovery

All genes in genome
• Computationally intensive
• Get a lot of junk

Clusters of genes sharing property related 
to the property investigated 
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Finding Patterns - Teiresias

• l / w / k
– l -> 6 to 8 CTT….A.TG
– w -> 17 to 19
– k ->  ?

• Heuristic approach (lot of overlaps)
– Specify k, find all patterns >=k

• Top down approach (avoids overlaps, but may also 
lose some patterns)
– Find all patterns with maximal support
– Collect them, mask them
– Drop support and repeat
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Statistical Significance Test

P-val

AA.TGA.G

A.T.GG..

T.GCGT.T

TGA.T.AC

AT.GT..A

GC..G..A

CGCT.A

CT.A.GC

….

…

….

AATCTGCTGATACATA
TGATAGCTAGATATAG
TGATACATGATACTTT
AATCTGCTGATACATA
AATCTGCTGATACATA
TGTACATATACCATAA

Upstream regions Markov Model
Simulated Sequences

….

…

….

0.04

0.10

0.001

0.6

0.3

0.8

…

….

….

Patterns from Teiresias search Normal Fits P-values

Search in Simulated 
Sequences
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First Question: Does a Short DNA Stretch Come from a CpG Island?

Table of Transition Probabilities Table of Transition Probabilities
for CpG Islands for Regions with no CpG Islands

Model      A       C       G       T Model       A       C       G       T
+ -
A .180   .274   .426  .120 = 1        A        .300    .205 .285 .210
C        .171   .368   .274  .188 = 1 C        .322    .298  .078  .302
G        .161   .339   .375  .125 = 1        G        .248   .246  .298  .208
T         .079  .355    .384 .182 = 1 T        .177    .239  .292  .292

Calculate the Log-Odds ratio for a chain x:

S(x)=log2 {[P(x/model+]/[P(x/model-]} = Σi log2 {a+
x(i-1)x(i)/ a-

x(i-1)x(i)} =
= Σi log2 βx(i-1)x(i)

Scores S(x) allow discrimination of a model (+) against another (-)
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Parameter estimation, model selection

Problem: Two models, M1 and M2 can be compared by 
comparing their probabilities P(M1/D) and P(M2/D). The best
model in its class is found by determining the set of 
parameters w maximizing the posterior probability p(M/D), or

Min(-log P(M/D) = -log P(D/M) – log P(M) + log P(D)

This is called MAP estimation (Maximum a posteriori)

P(D) is a normalizing constant independent of optimization. If 
the prior P(M) is uniform over all models then the above 
problem is reduced to the following Maximum Likelihood (ML) 
maximization (ML estimation):

Min (-log P(D/M)
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Case study: Find transcription factor

• It regulates 9 genes
• Database lists binding sites for each gene
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SCPD database -

Reported Consensus –TGA.T.
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Case study: Find transcription factor

• It regulates 9 genes
• Database lists binding sites for each gene
• Teiresias: 5 /16 / 7 parameters
• Found ~23000 patterns
• Developed statistical model: 3rd order Markov 

for randomly distributed sequences 
• Found ~2,000 motives with p<0.01
• No poly A’s or poly T’s
• Pattern closest to the consensus (TGA.T.) had p 
value of 0.003
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Defining and understanding Physiology

• Describe the state of living cells and organisms

• Understand the mechanisms by which 
homeostasis is achieved in organisms

PHYSIO      - LOGY

Physical state Logos = Subject of 
inquiry/expertise



10.555-Bioinformatics Lecture 7: Sequence recap. 
Physiology

17

Controlling blood sugar level

Blood sugar 
pool

Food

Storage

Consumption

Steady state
sugar concentration
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NORMAL INSULIN RESPONSE TO INCREASED PLASMA GLUCOSENORMAL INSULIN RESPONSE TO INCREASED PLASMA GLUCOSE

I

I

I

-
G

G

G

G

DECREASED GLUCONEOGENESIS VIA 
DECREASED PEPCK GENE EXPRESSION 

DECREASED GLUCONEOGENESIS VIA 
DECREASED PEPCK GENE EXPRESSION 

G

I

I

-

-

P
PEPCK

Nucleus

zC
zC
zC

Lactate

z-z-z 
C-C-C-C-C-C

Glucose (G)

signaling

G

z-z-z--z-z-z-z--z-z-z-z-z-z--z--z--z
C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C

Palmitate

signaling

Acetyl                      Malonyl 
CoA  CoA

Mitochondria

Acetyl CoA Carboxylase                             
zCO2

CO2

INCREASED GLUCOSE OXIDATON VIA INCREASED 
ACETYL COA  CARBOXYLASE  & MALONYL COA

INCREASED GLUCOSE OXIDATON VIA INCREASED 
ACETYL COA  CARBOXYLASE  & MALONYL COA

I

G I

G

+
I

I

HPERGLYCEMIA VIA INCREASED PEPCK 
GENE EXPRESSION

HPERGLYCEMIA VIA INCREASED PEPCK 
GENE EXPRESSION

HEPATIC INSULIN RESISTANCE,  POOR RESPONSE TO INCREASED  PLASMA GLUCOSE HEPATIC INSULIN RESISTANCE,  POOR RESPONSE TO INCREASED  PLASMA GLUCOSE 

HPERGLYCEMIA VIA  DECREASED ACETYL COA  
CARBOXYLASE  & MALONYL COA

HPERGLYCEMIA VIA  DECREASED ACETYL COA  
CARBOXYLASE  & MALONYL COA

I

I
G

G
I

I
G

G

G

G

GI

X

G

X

X  

P

+
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Methods depend on available measurements

OH

OH

cis-(1R,2S)-indandiol OH

O

1-keto-2-hydroxy-indan

indene

OH

OH

1,2-indenediol

OH

OH

cis-(1S,2R)-indandiol

O

indene oxide

1-indenol OH

1-indanone
O

OH

OH

trans-(1R,2R)-indandiol

A. Well defined systems
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Methods depend on measurements 
available

B. Systems that are not so well understood

• Different approaches are required

• Makes no sense to pursue system description at 
ultimate level of detail

Two broad categories of systems:

• Cells
• Tissues and whole organisms



Fermentor

V (L)

Where do we study cell physiology?
Bioreactors: Continuous, batch and fed-batch

Indene

Mass Flow Controller
Air in

PID

Gas Mass Flowmeter

Sampling valve

Air in
Mass Flow Controller

Air out

Gas Mass Flowmeter

Feed Tank

F (L/h)

Indene in air bubble (ppm)

Waste
Tank

F (L/h)

Parameters:
• Dilution Rate, D=F/V
• Indene Air Feed Concentration

Indene Air
Delivery System
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Bioreactor balances

See notes
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Bioreactor balances: Summary

Remember goal: Study physiology of cells

This means develop a system and protocol to allow the 
measurement of important physiological variables:

Specific growth rate: µ (h-1)
Specific rate of substrate uptake: qs (g glc/g cells * h)
Specific secretion rates: qp (g of P/g cells * h)

Similarly for other measurable extracellular metabolites

These variables provide little intracellular insight!
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Intracellular measurements

Metabolite measurements
Concentrations
Isotopic tracer distributions (using labeled substrates)
• 13C enrichment of specific metabolite carbons (NMR)
• Mass isotopomers (GC-MS)
• Radioisotopes

Proteins
Specific proteins
Protein profiles (proteomics)
Modified protein fractions (phosphorylated, 
glycosylated, etc.)

mRNA transcripts (DNA microarrays)
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Use of measurements

Reporters of intracellular state

In conjunction with models
Predictive
Descriptive
• Calculation of informative parameters

This use requires additional knowledge, usually 
of mechanistic nature. Such knowledge is more 

readily available in cellular systems

Use as profiles characteristic of 
physiological states (molecular physiology)


