10.555 Bioinformatics

Lecture 8

Developing metrics of cell physiology. Flux determination

Gregory Stephanopoulos MIT

Lecture 8

Metrics of physiology. Flux determination

1

Probing cellular function

Case study: Aminoacid biosynthesis in Corynebacterium glutamicum

Definitions

- Metabolic Pathway: A sequence of *feasible* and observable bioreaction steps connecting sets of input and output metabolites.
- Metabolic flux: The rate of material processing through a metabolic pathway

Flux as fundamental determinant of cell physiology

- Along with metabolite concentrations, fluxes define a <u>minimum set of information needed to describe</u> cell physiology
- Fluxes determine the <u>degree of engagement</u> of various enzymes in a conversion pathway
- Fluxes elucidate pathway flux control
- Useful for:
 - Calculating theoretical yields
 - Determining non-measured metabolite rates
 - Observing pathway function in vivo

HEPATIC INSULIN RESISTANCE, POOR RESPONSE TO INCREASED PLASMA GLUCOSE

HPERGLYCEMIA VIA INCREASED PEPCK GENE EXPRESSION

HPERGLYCEMIA VIA DECREASED ACETYL COA CARBOXYLASE & MALONYL COA

In-vivo flux determination

- Prior research: Based on isolating pathway of interest from rest of metabolism
 - * Limited success. Results of questionable value
- This research: Has yielded validated estimates of in-vivo metabolic fluxes. Approach is based on:
 - Material balances
 - Measurement of ¹³C label enrichment in selected (secreted) metabolites
 - * Careful analysis of NMR spectra fine structure
 - Isotopomer MW distribution measured by GC-MS

How do we measure fluxes?

Metabolite Balancing: Linear Systems

Include only branch points in the network (PSSH)

Degrees of freedom

$$I = v_1 = v_2 = r_A = r_B$$

$$A \longrightarrow X \longrightarrow B$$

Measurement of r_A or r_B suffices to determine flux J

Measurement of <u>both</u> r_A and r_B yields **over-determined** system

Lecture 8

Metabolite Balancing: Branched Pathways

Lecture 8

min
$$(\stackrel{=}{\underline{v}}_{m} - \underline{v}_{m})^{T} \cdot \underbrace{\underline{Cov}}_{v_{m}}^{-1} \cdot (\stackrel{=}{\underline{v}}_{m} - \underline{v}_{m})$$

subject to:
 $G_{c}^{T} \cdot \underline{v}_{c} + G_{m}^{T} \cdot \underline{v}_{m} = \underline{0}$

- v_m the 'true' (i.e adjusted to the measurements) value of the vector of measured fluxes
- vm the measured value of the vector of measured fluxes
- <u>Cov</u>_{vm} covariance matrix of the measurements (diagonal in the case of independent measurements) <u>from</u> : measurement distribution / equipment specs / experience

=

- Ensure that G_C^T is <u>fully-ranked</u>
- G_C^T is **singular** (i.e. not fully-ranked), when:
 - # balances < # of unknown fluxes
 - # balances \geq # of unknowns, <u>but</u>

<u>linear dependencies</u> are present in G_C^T

because...

Parallel pathways are present in the network (i.e. linearly dependent reactions called also *structurally singular groups*)
 Examples: anaplerotic pathways, nitrogen assimilation,

trans-hydro-dehydrogenase, isoenzymes

• Redundant measurements are present (see example 8.5) Lecture 8 Metrics of physiology. Flux 13

determination

Flux determination by metabolite balancing

Based on the balance for the conc'n of each metabolite X:

$$dX/dt = r_{met} - \mu X_{met} = 0$$

- The term μX_{met} (dilution effect by growth) is small relatively to turnover rates (small pools)

- dX/dt = 0 by Pseudo Steady State Hypothesis

$$\mathbf{r}_{\rm met} = \mathbf{G}^{\mathsf{T}} \mathbf{v} = \mathbf{0}$$

(G is rxm matrix of stoichiometry)

• Partition \mathbf{G}^{T} such that $0 = \mathbf{G}^{\mathsf{T}} \mathbf{v} = \mathbf{G}^{\mathsf{T}}_{\mathsf{m}} \mathbf{v}_{\mathsf{m}} + \mathbf{G}^{\mathsf{T}}_{\mathsf{c}} \mathbf{v}_{\mathsf{c}}$ $\mathbf{v}_{\mathsf{c}} = -(\mathbf{G}^{\mathsf{T}}_{\mathsf{c}})^{-1} \mathbf{G}^{\mathsf{T}}_{\mathsf{m}} \mathbf{v}_{\mathsf{m}}$

Ensure that G_c is of full rank (i.e., do not include linearly dependent reactions or redundant measurements)

Flux determination by metabolite balancing

- Redundancy is important. See notes for general procedure to:
 - Test consistency
 - Reconcile measurements
 - Determine new estimates that satisfy all balances (including the redundant)

- Degree of observability (D.O) = # of fluxes determinable (observable) from the measurements
- $\stackrel{=}{=}$ D.O. = rank of G_c^T
 - Degree of redundancy (D.R) = # of redundant measurements = # measurements that can also be determined from the balances and the rest of the measurements

- If # unknown fluxes > D.O. → underdetermined systems :
 Linear Programming
- If D.R. > 0 → overdetermined (for the observable fluxes) systems :

Solve by least squares - Gross error determination Lecture 8 Metrics of physiology. Flux determination

16

Gross Error Determination (1)

Algorithm (refer to slide 12 on Metabolite Balancing):

If we have more equations than unknowns, use some of these equations to eliminate all unknown fluxes v_c to get:

$$\underline{\underline{A}} \cdot \underline{\underline{v}}_{m} = \underline{0}$$

<u>Note:</u> # rows of A = # of redundant measurements

Due to the presence of measurement noise:

$$\underline{\underline{A}} \cdot \underline{\underline{v}}_{m} = \underline{\underline{\varepsilon}}$$

 $\underline{\epsilon}$: the residual of the constraints

Lecture 8

Gross Error Determination (2)

min
$$(\stackrel{=}{\underline{v}}_{m} - \underline{v}_{m})^{T} \cdot \underline{\underline{Cov}}_{v_{m}}^{-1} \cdot (\stackrel{=}{\underline{v}}_{m} - \underline{v}_{m})$$

subject to:
 $\underline{\underline{A}} \cdot \underline{\underline{V}}_{m} = \underline{\underline{0}}$

solution:
$$\underline{v}_{m} = (\underline{I} - \underline{\underline{Cov}}_{v_{m}} \cdot \underline{\underline{A}}^{T} \cdot (\underline{\underline{A}} \cdot \underline{\underline{Cov}}_{v_{m}} \cdot \underline{\underline{A}}^{T})^{-1} \cdot \underline{\underline{A}}) \cdot \underline{\underline{V}}_{m}$$

Consistency index h:

$$h = \left(\underbrace{\overline{v}}_{m}^{T} - \underline{v}_{m} \right)^{T} \cdot \underbrace{\underline{Cov}}_{v_{m}}^{-1} \cdot \left(\underbrace{\overline{v}}_{m}^{T} - \underline{v}_{m} \right)$$

$$h = \left(\underbrace{\overline{v}}_{m}^{T} \right)^{T} \cdot \underline{A}^{T} \cdot \left(\underline{A} \cdot \underline{Cov}_{v_{m}} \cdot \underline{A}^{T} \right)^{-1} \cdot \underline{A} \cdot \underbrace{\overline{v}}_{m}$$
Lecture 8
Metrics of physiology. Flux
18

determination

Gross Error Determination (3)

If:

$$h \geq \chi^2_{1-\theta} (m)$$

m = degrees of freedom = number of redundant measurements

then:

<u>reject the hypothesis</u> that measurement errors are insignificant with confidence level of $1-\theta$

Lecture 8

Metrics of physiology. Flux determination

19

Probability Points of the x² Distribution with m Degrees of Freedom

	θ (tail area probability)						
Degrees of freedom	0.50	0.25	0.10	0.05	0.025	0.01	
m = 1	0.455	1.32	2.71	3.84	5.02	6.63	
m = 2	1.39	2.77	4.61	5.99	7.38	9.21	
m = 3	2.37	4.11	6.25	7.81	9.35	11.3	
m = 4	3.36	5.39	7.78	9.49	11.1	13.3	

Gross Error Determination - Example 1

L

[1,2](0,00/2) = 461

				$\frac{11 [X^{-}(90\%, 2) - 4.0]}{11 [X^{-}(90\%, 2) - 4.0]}$					
-	=			After deletion of the measurement of					
S.		D (h ⁻¹)	No deletion	Glucose	Biomass	CO ₂	Ethanol	Glycerol	
of		0.012	2.02	0.04	0.00	1.90	1.37	0.28	
are	diti	0.014	3.32	1.27	1.64	0.63	3.31	2.56	
ultu	Sol	0.014	10.99	9.53	10.19	0.00	9.05	10.99	
S O		0.017	0.27	0.13	0.16	0.04	0.26	0.24	
		0.027	1.52	n.a.	n.a.	n.a.	n.a.	n.a.	
н Г Г		0.030	0.33	0.18	0.13	0.28	0.02	0.04	
) NO V	Ă, MI	0.034	1.52	0.32	0.52	0.56	1.52	1.09	
d D d C d	der	0.051	7.17	3.37	4.50	0.74	5.98	6.79	
o ite		0.053	0.57	0.26	0.18	0.51	0.06	0.03	
ة م		0.056	0.88	0.61	0.72	0.01	0.64	0.88	
Se-	uct	0.058	1.66	1.14	1.34	0.02	1.18	1.65	
	po	0.058	10.20	8.69	7.81	8.24	0.00	4.56	
ם פור		0.062	2.61	2.46	2.58	0.23	0.94	2.43	
	Lect	ureQ.067	0.79	0.78 Metrics of physi	ology. Flux	0.20	0.15	₂₁ 0.57	
				determina	ation				

Gross Error Determination - Example 2

h [χ^2 (90%, 2) = 4.6]

f			_	After deletion of the measurement of					
с Ч	ပ	Time (h)	No deletion	Substrate	O ₂	Biomass	CO ₂		
cane-limited batch growt	ider aerobi	0	109.94	76.04	36.74	46.30	5.03		
		2	26.08	24.29	4.06	16.00	1.90		
		4	21.54	17.24	7.07	7.69	0.00		
		8	8.35	5.63	4.37	1.12	0.78		
	un Suc	10	4.47	1.72	3.65	0.01	1.68		
	<i>lytica</i> onditio	12	0.92	0.83	0.28	0.40	0.00		
		14	1.05	1.04	0.03	0.89	0.18		
	od o	16	3.36	3.19	0.00	3.20	1.23		
	a ji	18	2.68	2.66	80.0	2.36	0.65		
dec	lid	19.5	2.60	2.60	0.18	2.14	0.46		
xac	nc	21.5	1.97	1.69	0.71	0.85	0.00		
Te)	Ű	23.5	3.68	3.67	0.29	3.07	0.74		
<u>1-</u>	Lecture	25.5	5.95 Metrics	5.21	2.06	3.41	0.23		
	Lociul		1,101110	determination					

Gross Error Determination - Example 3

 $h \quad [\chi^2 (90\%, 2) = 4.6]$

J			_	After deletion of the measurement of					
e O		D(h⁻¹)	No deletion	Glycerol	O ₂	Biomass	CO ₂		
us cultur		0.050	0.06	0.06	0.01	0.06	0.00		
	ogens	0.115	0.20	0.14	0.01	0.16	0.12		
		0.125	0.24	0.14	0.17	0.11	0.03		
ION		0.250	0.26	0.24	0.00	0.26	0.07		
ol-limited continu	ae	0.350	0.32	0.28	0.12	0.24	0.01		
	er	0.485	0.40	0.31	0.19	0.25	0.02		
	act	0.510	0.33	0.33	0.06	0.30	0.00		
	, qc	0.625	0.39	0.34	0.14	0.29	0.01		
	ere	0.75	0.50	0.36	0.27	0.28	0.05		
	Z	0.850	0.40	0.37	0.10	0.33	0.00		
Sec		0.910	0.38	0.37	0.00	0.38	0.06		
lyo		0.935	0.46	0.37	0.20	0.30	0.03		
C		0.980	1.48	0.38	0.75	0.64	1.31		
	Lecture	[°] 1.010	5.55 Metric	deternanation	^{ux} 5.54	0.07	4.26		

In-vivo flux determination: RESULTS

- Flux distributions at G6P in C. glutamicum
 * Flexible node
 - * Trans-hydrogenase activity discovered
- Unequivocal evidence of PYR carboxylation
- Complete kinetic analysis of the H₄D node
- Mammalian cell culture:
 - * Glycosylation <u>strongly</u> depends on G6P fluxes
 - <u>Strong</u> correlation between glycolytic fluxes and apoptotic death

Fluxes provide invaluable perspectives of physiological state and metabolic control

Flux determination from ¹³C label enrichment of (secreted) metabolites

RESULTS (cont'd)

- Determination of Group Control Coefficients (GCC) from flux estimates
- GCC are measures of the control exercised by a group of reactions on a flux
- See notes

Group Control Coefficients:

RESULTS (cont'd)

Cell death in culture (CHO, Hybridomas)

- Strongly correlated to culture energetics
- Cells with high mitochondrial membrane potential (MMP) are resistant to apoptosis inducers

Growth and death rates vs. dilution rate

Steady state multiplicity

Metabolic flux analysis

ATP generation and pyruvate flux distribution

Steady state multiplicity

Hybridoma physiology at steady states

Rhodamine Staining of Hybridomas at Steady State

Conclusions

* Cell survival in nutrient-limited environment depends on mitochondria membrane potential

Hybridomas with high metabolic activity can be selected in chemostats, (or by sorting)

* Hyperactive cells are very efficient in nutrient utilization (minimal lactate production). They retain the hypermetabolic state upon return to nutrient-rich environment

Important issues in flux determination

- Measurement redundancy allows validation of measurements and pathway biochemistry
- Pathway modification and discovery are part of the flux determination process
- Metabolic and isotopic steady states are strict requirements for isotopic label analysis
- Analogy to material structure determination

Using only extracellular accumulation rates:

• only net fluxes can be observed

$$v^{net} = v^{f} - v^{b}$$

 $v^{exch} = min(abs(v^{f}, v^{b}))$

• net fluxes of pathways that branch apart and rejoin later can not be differentiated

Lecture 8

Singular net flux groups in lysine biosynthesis network

Use of tracers in MFA

- Use of radioactive tracers
- Local network results (see example of H₄D branch point, example 9.1)
- Global network analysis. Methods based on balances of:
 - Metabolites
 - Label vs. non-label
 - Enrichment
 - Isotopomers
- Approach depends on measurements available

Use of radiolabeled substrates for flux determination

 At steady state, a pulse of a radiolabeled metabolite (*M**) can be used to determine the flux (*J*) from a metabolite pool (*M*) (single compartment model)

• Radiolabeled metabolites are used for greater measurement sensitivity and minimal perturbation of the steady state.

Lecture 8

Considering transport

Steady state material balance equations on labeled metabolite M (M^*)

Thus, we need to measure M_{in} , M^*_{in} and M^*_{tot}

Lecture 8

Metrics of physiology. Flux determination

42

Flux determination with radioactive tracers

$$\frac{dM_{tot}^{*}}{dt} = -\left(\frac{J}{M_{in}}X\right)M_{in}^{*}$$

Assuming rapid eqlm. between intracellular and extracellular M:

$$\frac{dM_{tot}^{*}}{dt} = -\left(\frac{J}{M_{tot}}X\right)M_{tot}^{*} \longrightarrow \ln\left(\frac{M_{tot}^{*}(t)}{M_{tot}^{*}(0)}\right) = -\left(\frac{J}{M_{tot}}X\right)t$$

Lecture 8

Methods depend on available measurements

Use of the chemostat for flux measurements

¹⁴C-Tracer Experiments

Flux Determination

$$\ln\left(\frac{M_{tot}^{*}(t)}{M_{tot}^{*}(0)}\right) = -\left(\frac{J}{M_{tot}}X\right)t = -kt$$

Use of tracers in MFA

- Use of radioactive tracers
- Local network results (see example of H₄D branch point, example 9.1)
- Global network analysis. Methods based on balances of:
 - Metabolites
 - Label vs. non-label
 - Enrichment
 - Isotopomers

Atom mapping matrices

Lecture 8

Flux determination from ¹³C label enrichment of (secreted) metabolites

Use of tracers in MFA

- Use of radioactive tracers
- Local network results (see example of H₄D branch point, example 9.1)
- Global network analysis. Methods based on balances of:
 - Metabolites
 - Label vs. non-label
 - Enrichment
 - Isotopomers

Atom mapping matrices

Lecture 8

 Molecules of the same metabolite labeled differently upon introduction of a labeled substrate

Use of isotopic tracers

¹³C-NMR Spectroscopy

• Determines the label enrichment of a particular carbon atom in a molecule

Mass Spectrometry

Differentiates ions based on mass/charge ratio

determination

Detailed accounting of metabolite isotopomers allows:

• <u>Accurate prediction of</u> ¹³<u>C enrichment:</u>

$$^{13}C_1 = L_{15} + L_{16} + L_{146} + L_{136}$$

$${}^{13}C_2 = L_2 + L_{24} + L_{25} + L_{26} + L_{246}$$

$$^{13}C_3 = L_3 + L_{136}$$

Metrics of physiology. Flux determination

• <u>Prediction of iso-topomer</u> <u>MW distr'n</u>

$$L_{M+1} = L_2 + L_3$$

$$L_{M+2} = L_{15} + L_{16} + L_{24} + L_{25} + L_{26} + L_{46}$$

$$\mathbf{L}_{\mathbf{M}+3} = \mathbf{L}_{136} + \mathbf{L}_{146} + \mathbf{L}_{246}$$

Isotopomer balance around D:

ISOTOPOMERS

Derivatization of Amino Acids with TBDMS

Derivatives can be volatilized for GC separation

TBDMS-derivative of Valine:

 To obtain the mass isotopomer distribution of the aminoacid, we need to <u>correct</u> the measurements for the natural abundance of the rest of the atoms in the derivatives

Fragmentation of TBDMS-derivatives

 Ionization prior to MS generates fragments of the derivatives
 Positional information about the isotopic tracer can be obtained

ISOTOPOMER DISTRIBUTION ANALYSIS

Metabolic Flux Determination

Mass spectrometric measurements (1)

