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• Identification of discriminatory genes
• Dimensional reduction - Projection methods
• Discriminatory gene expression patterns
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Analysis of Microarray Data

3. Analysis of Static expression data
• Statistical methods
• Decision trees
• Projection methods
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Statistical methods: Identification 
of discriminatory genes
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Figure 3. determination of minimum sample size for two-class (ALL, AML) distinction, selection of discriminatory genes with the 
estimated sample sizes of two classes, and FDA projection. (a) Power plot versus sample size showing how to determine the sample
size required for two class distinction (8 from each class). (b) The distributions of H0 and H1 for the determined sample size. (c) 
Univariate F statistic values of the initial 388 discriminatory genes with a threshold (F0.01(1,18) = 8.2854) in randomly selected 8 ALL 
and 8 AML samples out of the entire data set. (d) Leave-one-out cross-validation applied to estimate the classification error rates and 
then to select the 50 most discriminatory genes with the same samples. (e) Separation of the 8 ALL and 8 AML samples in the two-
dimensional FDA projection space defined discriminant axes of the 50 discriminatory genes. 
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Figure 2. (a) Leave one out cross-validation (LOOCV) algorithm, where N is the total number of 
samples and c is the number of classes, so that one sample from each class is included in the 
test. 

(a) Decide the number of iterations

Split the data set into randomly selected 
sets of N-c training and c test samples

Identify top prospects for discriminatory genes
based on Wilks’ lambda criterion

Construct a classifier comprising one gene having 
the highest F value and classify the test set to get 

an error rate for the gene

Repeat the above procedure using classifier
comprising sets of 2, 3, ... top ranked genes on the

basis of Wilks’ lambda criterion

Store the error rates vs the number of genes used 
for classifiers in the given training and test set

Sort all genes based on the frequency they
are identified as “discriminatory” in g

iterations and then determine the final set
of k discriminatory genes, the first k genes

sorted by the frequencies

Calculate the average error rates for 
the number of genes used for classification

and plot the averaged error rates vs 
the number of genes
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Figure 3. determination of minimum sample size for two-class (ALL, AML) distinction, selection of discriminatory genes with the 
estimated sample sizes of two classes, and FDA projection. (a) Power plot versus sample size showing how to determine the sample
size required for two class distinction (8 from each class). (b) The distributions of H0 and H1 for the determined sample size. (c) 
Univariate F statistic values of the initial 388 discriminatory genes with a threshold (F0.01(1,18) = 8.2854) in randomly selected 8 ALL 
and 8 AML samples out of the entire data set. (d) Leave-one-out cross-validation applied to estimate the classification error rates and 
then to select the 50 most discriminatory genes with the same samples. (e) Separation of the 8 ALL and 8 AML samples in the two-
dimensional FDA projection space defined discriminant axes of the 50 discriminatory genes. 
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(a)

Figure 4. determination of minimum sample size for the three-class (B-ALL, T-ALL, AML) distinction, selection of discriminatory 
genes with the estimated sample sizes of three classes, and FDA projection. (a) Power plot versus sample size showing how to 
determine the minimum sample size (7 from each class). (b) The distributions of H0 and H1 for the determined sample size. (c) 
Univariate F statistic values of the initial 527 discriminatory genes with a threshold (F0.01(2,26) = 5.5263) in randomly selected 7 B-ALL, 
7 T-ALL and 7 AML samples out of the entire data set. (d) Leave-one-out cross-validation applied to estimate the classification error 
rates and then to select the 80 most discriminatory genes with the same samples. (e) Separation of the 7 B-ALL, 7 T-ALL and 7 AML 
samples in the two-dimensional FDA projection space defined discriminant axes of the discriminatory 80 genes. 
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3. Analysis of Static expression data
• Statistical methods
• Classification using Decision trees
• Projection methods

Classification using Decision trees
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Data Analysis and Pattern Classification

Problem-1: Consider N samples and M genes with their
corresponding expression levels, ei , where i = 1, …, M. M1
of these tissues are characterized as “Healthy”, while the
other M2 are labeled as “Pathological”. Find the set of 
discriminatory genes whose expression levels can diagnose the 
state, i.e. healthy or pathological, of a new sample tissue.
Feature Space: The space of expression levels for the M
genes, i.e. FS = {e1 , e2 , e3 , …, eM-1 , eM }
Class: A set of genes characterized by the same label, e.g.
C1 = “Healthy” and C2 = “Pathological”.
Pattern: The specific M-tuple of expression levels, which
characterizes a tissue as belonging to a specific class, i.e.
p(2) = {e(2)

1 , e(2)
2 , e(2)

3 , …, e(2)
M-1 , e(2)

M }, Pattern for
“Pathological” Tissues.
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Data Analysis and Pattern Classification

Pattern Classification: The process through which the feature 
space, FS, is partitioned into K exclusive regions,
FSi i =  1, 2, …, K. Thus,

FS(i) ∩ FS(j) = 0    and ∪i=1-K FS(i) = FS
Discriminant Functions: d (p) = d (e1 , e2 , e3 , …, eM-1 , eM)
define the partition of the feature space into the K regions.
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Data Analysis and Pattern Discovery

• Problem-2: Consider N samples and M genes with their
corresponding expression levels, ei , where i = 1, …, M.
“Discover” the patterns in gene expression levels which are
common in a number of samples, i.e. find the groups of
samples, each of which is characterized by a common pattern
in gene expression and define this common pattern of gene
expression levels for each group of samples.

• Problem-3: Consider one type of sample and the gene
expression levels for M genes over a period of L time
points. “Discover” the patterns in gene expression levels,
which are common for a particular group of genes, and
cluster the genes with similar patterns into the same group.
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Data Analysis and Pattern Classification

Training: 
The process through which one determines the
discriminant functions, using past examples of “pattern” -“class” 
associations, i.e. associations between
pattern p(i) = {e(i)

1 , e(i)
2 , e(i)

3 , …, e(i)
M-1 , e(i)

M } and Class C(i)

Types of Problems:
• Static: when the gene expression levels represent the
expression at a single time.
• Dynamic, or Time-Dependent: when the expression levels
are measured over a period of time at various time intervals.

• Equal sampling intervals.
• Unequal sampling intervals.
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Data Analysis and Pattern Classification

• Issues to Resolve:
– Labeling the various samples
– Representation:Selecting the distinguishing features for 
classification; particularly important for time-dependent data, 
e.g. do you use the values, or the time derivatives of 
expression levels for classification?
– Selecting the form of the discriminant function
– Do you have statistically “enough” data for training?
– Do you have enough data for testing?
– What is the “noise” in your measurements?
– What is the sensitivity of the generated discriminant
function?
– What is the robustness of the resulting classification 
scheme?
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Information Theory:Decision Trees in Pattern Classification

Let N be the total number of examples (e.g. samples) and Mi
the number of samples in each of the K classes.
The Shannon entropy provides a measure of the information content
in the data set,

I(M1, M2, …, MK) = Σi=1-K  (Mi/M) log2 (Mi/M) 

• If all examples belong in the same class then I = 0.
• The smaller the entropy the less variety of classes (more order) in the 
data set.

Split the data into two groups G1 and G2 with M(1) and M(2) examples 
(samples) in each group. Compute the information content for each 
group and for the whole set of examples.
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Dimensional reduction. Projection 
methods

Why?
• Visualize data in fewer dimensions
• Class discovery
• Class separation
• Modeling

How?
• Identify projections that minimize information loss 
in the lower dimensional space
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A. Principal Component Analysis

• Projection of gene-i expression along the j-th principal component

g*
ij = Σt=1-k git vtj

where git is the gene expression at time t, and
vtj is the I-th component of the j-th eigenvector

• The variance accounted for by each of the components is related to
its associated eigenvalue. Consequently, the eigenvectors with
larger eigen-values are the ones containing most of the information.
Eigenvectors with small eigen-values are uninformative.

• Keep a small number of eigenvectors reproducing the desired
amount of variance in the data
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Identification of tissue-specific genes and validation using new samples. 
(a) Histogram of the angles between the x-axis and the points defined by the two principal loadings of each gene 
shown in  Fig. 1d.  Three main features, corresponding to the linear structures shown in Fig. 1d can be discerned, and 
are labeled as A, B and C. (b) PCA projection of all samples using the genes in Structure A.  The samples in the initial 
data set are represented by red circles, and the new samples by blue asterixes.  The two liver samples in the initial data 
set (Li-1, Li-2) and the new liver samples (NLi-1, NLi-2, NLi-3) are separated from the other samples, all of which 
cluster at the origin. (c) Projection of all samples using the genes in structure B.  The muscle samples in the initial data 
set (Mu-1, Mu-2, Mu-3) are separated from the other samples along PC1.  All the other tissue samples cluster at the 
origin.  The new muscle samples are also separated when projected using these genes (NMu-1, NMu-2, NMu-3).  (d) 
Projection of all samples using the genes in structure C.  The six brain samples in the initial data set, and the three new 
brain samples are separated from the other samples.  
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Figure 3: Projection of the Lymphoma data using PCA.
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Figure 2. FDA projection of the expression phenotypes comprising 7070 genes measured in samples obtained 
from healthy individuals (5 samples) and patients with oral epithelium cancer (5 samples). (A) 35 discriminatory 
genes out of 7070 total genes allow FDA to clearly separate the two groups in one dimensional discrimination line. 
(B) Discriminant loading shows how 35 genes behave for separation in (A): positively co-regulated group includes
NmU, aldehyde dehydrogenase 9 and 10, Her3, KIAA0089, diazepam binding inhibitor, monoamine oxidase B,
crystallin alpha B, carboxylesterase 2, Wilm tumor-related protein, Zinc finger protein 273, MHC class I polypeptide 
related sequence A, Hpx-42, Lysophospholipase like, placental protein (PP11), cytochrome c oxidase subunit Vb, 
Cytochrome P4502C9 subfamily IIC, TF 20, FUT6, TYRO3, Keratin 4, and HLF. The negatively co-regulated group 
includes Ferritin, Urokinase plasminogen activator, Gro2 oncogene, 5T4 oncofetal trophoblast glycoprotein, HSP 
90, Cathepsin L, Runt-related TF, Phospholipase A2, FAT tumor suppressor, macropain subunit zeta, CD38, TAL1 
(SCL) and G protein-coupled receptor (AZ3B). These two groups are anti-correlated with respect to each other. 
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Figure 3. FDA projection of expression data obtained from patients with B-ALL, T-ALL, and AML.  (A) Projection of 
the samples using 50 discriminatory genes allows FDA to clearly separate the three classes of leukemia 
expression phenotype in a 2-D discrimination space. The first DF distinguishes the T-ALL group from B-ALL and 
AML. The second DF separates B-ALL group from AML to complete the group separation. (B)The contributions of 
individual genes to the discrimination and their interactions are evident on plotting the discriminant loadings, where 
the genes are clustered into three groups, and show group-specific regulation patterns, except two genes between 
AML-specific gene group and T-ALL specific gene group. Ten of the 14 AML specific genes observed above are 
common with the 25 AML genes identified by Golub et al. (2000), 2 of the 25 T-ALL and 2 of the 9 B-ALL genes 
above are common with the 25 ALL genes identified by Golub et al (2000).  The identity of these genes is provided 
in Supplementary Materials.
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Figure 4. (A)Projection of the expression phenotypes of cultures of Synechocystis sp. PCC 6803 to a FDA-defined 
discrimination space. This photosynthetic bacterium was grown under conditions shown in (B) and the expression levels of 
88 genes were measured by a DNA microarray at 29 time points spanning the entire course of the experiment. Of the 88 
genes, 27 were identified as most discriminating of the four classes defined by the four different light conditions and their 
expression levels were projected to the FDA-defined space. It can be seen that the four phenotypic classes are clearly 
identified in the 3-dimensional FDA projection space. (C) The first DF shows the largest discrimination power separating all 
the groups, discriminating clearly Phase III from the others. The second DF separates Phase IV from Phases I and II, while 
the third DF is necessary to separate Phase I from II.
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Use of microarray data in Drug Discovery 
(Expression data from: 
“Functional discovery via a compedium of expression 
profiles,” Huges et al., Cell, 102: 109-126, (2000))

Case study:
45 single gene deletion yeast mutants were 

classified in the following 4 groups according to the effect 
that each gene deletion had on cell physiology: 

Mitochondria respiration
Cell wall
Protein synthesis
Ergosterol synthesis

Microarray gene expression data were collected for each 
mutant and projected in a CDA space to yield a well defined 
description of the physiology of each mutant
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Drug Discovery (cont’d)
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Use of microarray data in Drug Discovery

Microarray gene expression data were collected for 
each mutant and projected in a CDA space to yield a well 
defined description of the physiology of each mutant

Then various drugs were tested as to their effect on the 
wild type as determined by the expression phenotype and 
its CDA projection

Case study:
45 single gene deletion yeast mutants were 

classified in the following 4 groups according to the 
effect that each gene deletion had on cell physiology: 

Mitochondria
Cell membrane
…..
…..
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Figure 5. FDA projection of 27 yeast deletion mutant expression phenotype experiments grouped by the functionality 
of the eliminated gene. Four groups of related mutants have been distinguished using three DFs by projecting the 
expression levels of 200 of the most discriminating genes. The expression phenotypes obtained from the application 
of 10 chemical compounds to the wild-type yeast cultures are also projected into the FDA space defined by the 
mutants. The proximity in FDA space of these projections to those of the expression phenotype of the deletion mutant 
groups helps characterize the action of the compound on cell physiology. Note that one compound experiment (Cal) 
which appears incorrectly classified is actually in the center of the 3-D diagram, and not clearly associated with any of 
the groups shown. The classification suggested by the proximity of the projected phenotypes to the deletion mutants 
groups agrees with classification provided by Hughes et al. (2000).

Deletion 
mutants

Compounds

Compound names:
Dox - Doxycycline 
Cyc - Cycloheximide
2-d - 2-deoxy-D-glucose
Glu - Glucosamine
Tun - Tunicamycin
Cal - Calcofluor white 
Itr - Itraconazole
Lov - Lovastatin
Ter - Terbinafine
Dyc - Dyclonine


