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The execution of agent-based microsimulation requires an initial set of 
agents with detailed socioeconomic and demographic attributes to 
support subsequent behavioral and market models. Data limitations 
and privacy reasons often restrict the scope and detail with which a 
synthetic population can be generated by the traditional population 
synthesis approach. For the accommodation of the growing requirement 
of microsimulation on spatial resolution and variety, considering new 
data sources that overcome the data limitations and support population 
synthesis at more disaggregated levels is necessary. This paper presents 
a two-stage population synthesis approach not only to improve the accu-
racy of population generation with imperfect microdata and marginal 
data, but also to use additional data sets when the spatial details of the 
synthetic population are interpolated. A general iterative proportional 
fitting (IPF) method is used in the first stage to estimate the joint dis-
tribution of household and individual characteristics under multiple 
levels of constraints. Additional building information is collected from 
multiple sources and used to estimate spatial patterns of housing and 
household characteristics that are then preserved through a second 
IPF procedure. Preliminary tests of the proposed two-stage IPF-based 
approach with Singapore data show that the method yields better fitted 
population realizations at more fine-grained levels than do traditional 
one-step population synthesis methods.

In the past decade growing efforts have been seen in the development 
of an agent-based microsimulation platform for activity-based travel 
demand models as well as large-scale land use and transportation 
models, including MATSim (1), DynaMIT (2), UrbanSim (3), and 
ILUTE (4) as well as others (5, 6). These models generally require 
complete lists of agents such as households, persons, and firms to 
be initialized with realistic attributes, locations, relationships, and 
behaviors at the beginning of the simulation.

Although in most cases detailed information of the full population 
can be found in the census data, privacy reasons and policy restric-
tions usually make the data inaccessible to researchers. Thus, popu-
lation synthesis approaches were developed to combine microdata 
samples that lacked spatial detail with marginal data about population 

characteristics at aggregated spatial levels to expand the microdata 
sample into a complete synthetic population.

The quality of generated synthetic populations depends, of course, 
on the quality and detail of the sample and marginal data. While the 
data quality has been improving, it has not kept pace with the growing 
interest in microsimulations at the scale of buildings and individu-
als tagged with many associated characteristics. Available sample 
data are often thin and incomplete, and the available marginals are 
spatially aggregated. Even in those countries with sizable microdata 
samples, the geographic resolution of the released data remains coarse 
(for privacy reasons). In this paper a population synthesis approach 
is presented that is intended to improve the attribute richness and 
geographic distribution of synthetic populations generated from typi-
cally available marginal statistics combined with supplemental data 
about built form and population density. Disaggregated synthetic 
population realizations are generated at the building and parcel  
levels, and marginal constraints on household and population counts 
are also considered.

The standard iterative proportional fitting (IPF) algorithm used 
by many earlier population synthesizers is not able to fit marginal 
constraints on multiple agent types simultaneously. For example, an 
agent-based model may want to simulate the behavior of individual 
agents as well as households agents. There are likely to be separate  
marginal statistics for household characteristics and population char-
acteristics, together with limited cross-tabulation statistics about 
individual within-household characteristics. The usual IPF algorithm 
must be modified to combine the household and population fitting 
procedures in a way that retains some of the structure of the joint 
distribution that is evident in the cross tabulations. The synthesizer 
proposed in this paper addresses the geographic resolution and  
the household and population interaction issues with a single 
multistage IPF procedure. The approach has been implemented 
for the SimMobility project in the Future Urban Mobility research  
group at the Singapore–MIT [Massachusetts Institute of Technol-
ogy] Alliance for Research and Technology (SMART) in Singapore. 
SimMobility is an integrated system of mobility-sensitive simulation 
models to evaluate future urban transportation scenarios. (For more 
information on the SimMobility project research, see http://ltaacademy.
gov.sg/doc/J10Nov-p30Ben-Akiva_FutureUrbanMobility.pdf.)

The rest of the paper is organized as follows. A review of the 
previous research effort on relevant issues of population synthesis is 
presented next, followed by a presentation of the theoretical devel-
opment of the general IPF procedure that enables satisfying multi-
level constraints simultaneously in the fitting process. The proposed 
two-stage population synthesis approach is then discussed, applied 
to the Singapore case, and evaluated on the basis of a series of tests. 
Conclusions are developed to close the paper.

Synthetic Population Generation at 
Disaggregated Spatial Scales for Land Use 
and Transportation Microsimulation

Yi Zhu and Joseph Ferreira, Jr.

Y. Zhu, Room 7-534, and J. Ferreira, Jr., Room 9-532, Department of Urban 
Studies and Planning, Massachusetts Institute of Technology, 77 Massachusetts 
Avenue, Cambridge, MA 02139. Corresponding author: Y. Zhu, zhuyi@mit.edu.



Zhu and Ferreira� 169

Previous Work

In the field of urban and transportation modeling, Beckman et al. are 
among the researchers who first proposed to combine aggregated 
control totals from the census summary files and detailed micro-
data from Public Use Microdata Sample data to generate a complete 
population of households with critical attributes (7). To estimate the 
joint distribution of agent attributes under constraints of marginal 
distributions, they used the standard IPF procedure initially developed 
by Deming and Stephan (8), and later improved by Stephan (9), 
Fienberg (10), Ireland and Kullback (11), and others.

Grounded on the work of Beckman et al. (7), research on popula-
tion generation has, for years, been striving to address a number of 
issues related to population synthesis, ranging from zero-cell problems 
(12, 13) to nonconforming constraints (14) to spatial heterogeneity 
(15). In this review, the focus is on recent efforts to address two 
key issues:

1.	 Generating multiple agent types simultaneously and
2.	 Addressing data incompleteness.

Population Synthesis for Multiple Agent Types

Mainly four groups of methods have recently been proposed 
to address Issue 1. The first group estimates the joint distribu-
tions of attributes for households and persons through separate IPF 
procedures. Then, household samples are drawn into the synthetic 
population iteratively according to how well the types of house-
holds and their members fit to the estimated joint distributions at 
household and person levels (13, 16). The second group of methods  
adopts a two-step fitting process that includes part of the first-step 
estimates in the second step. For example, Pritchard and Miller pro-
posed a method that fits persons first and then uses a subset of the  
person type attributes (such as head gender or husband–wife type) 
with other household attributes to perform an IPF procedure at the 
household level (17). At the allocation stage, households and persons 
are matched through shared attributes included in both IPF procedures, 
and a conditional Monte Carlo method is used to assign persons to 
households.

The third group of methods focuses on incorporating individual 
marginal distributions into the marginal distributions of households. 
For example, ALBATROSS uses a two-step procedure with the first 
step converting known marginal distributions of persons to mar-
ginal distributions of households on relevant attributes by using a 
relation matrix. In the relation matrix, the distribution of households 
across the attributes of individuals who live in a household is speci-
fied. The resulting marginal household distributions are used as con-
straints for the second-stage IPF, which produces a joint distribution 
of household attributes (12).

The IPF algorithms used in these first three groups of methods are 
mainly the standard ones, and the joint distributions of household-level 
attributes and person-level attributes are fitted either separately or 
sequentially. The fourth group of methods is intended to simultane-
ously generate the joint distributions by satisfying household-level 
and person-level constraints. Ye et al. used an iterative reweight-
ing procedure to heuristically adjust household weights to satisfy 
household-level and person-level joint distribution of attributes 
derived from separate IPF procedures separately (18). This method 
is analogous to a sparse list variant of the IPF procedure using 

frequencies fitted by IPF of household types and person types as 
marginal constraints. However, as pointed out by the authors, the 
method is still heuristic in nature and there is no theoretical proof 
of convergence. By comparison, the hierarchical IPF method pro-
posed by Müller and Axhausen is intended to satisfy multiple lev-
els of constraints in a single IPF procedure (19). That method is 
similar to the general IPF algorithm used in this study. A detailed 
introduction and a discussion of the algorithm are presented in 
the following section.

Accounting for Data Limitations

To address the limitation of sample availability, Barthelemy and 
Toint develop a synthesis method working without samples based 
on a hierarchical three-step approach (20). The first step is to create  
individual pools based on known empirical distributions of individual 
attributes processed by a standard IPF procedure. Then, entropy 
maximization and Tabu search are used to generate household pools, 
and ad hoc matching rules are used in the third step to assign indi-
viduals to households. However, this approach does not guarantee 
the consistency of households and individuals in satisfying marginal 
constraints.

In addition, a simulation-based approach was developed by Farooq 
et al. to address the data limitation issue (21). Gibbs sampling was 
used to produce the joint distribution of agents’ attributes based on 
a series of conditional distributions estimated on the basis of the 
limited observed data. However, Farooq et al.’s approach faces a 
critical challenge. As the number of constraint attributes increases, 
the complete conditionals that are required by Gibbs sampling will be 
increasingly unlikely to be available. The multinomial logit models 
used to estimate the conditional distributions may not have a satis-
factory goodness of fit. As a result, inconsistencies will arise for the 
joint distribution of attributes obtained from estimated conditional 
distributions.

Both approaches generated populations with only those attributes 
that were included in the constraints. In this paper, there is a detailed 
sample with a small sampling rate (1%), and the aim is to seed a 
population with many attributes that are included in the sample but 
for which there are few or no marginal constraints (e.g., information 
about vehicle ownership, occupation, and lifestyle). It is in general 
impossible to constrain all attributes either because of the unknown 
marginal data of some attributes or because the dimensionality of 
the contingency table used for IPF is restricted by computer memory. 
Thus, both approaches are inadequate for the purposes of this paper. 
As data from emerging sources such as urban sensing and web ser-
vices become increasingly available, the time has come to develop 
approaches that can extract useful information, such as workplaces 
and home locations, from these data to support population synthesis 
and microsimulation (22).

General Iterative Proportional  
Fitting Algorithm for Multiple  
Level Constraints

The problem of interest is to estimate the joint distribution of multi
dimensional attributes, in which relatively unreliable correlation 
information from the microdata sample is supplemented by reliable 
marginal subtotals obtained from independent sources. Deming and 
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Stephan proposed an objective function based on a weighted least 
squares criterion (8):
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where

	pi	=	sample proportion of cell i,
	π̂i	=	estimated cell proportion,
	 j	=	 index for attribute categories, and
	J	=	 total number of categories of all constraint attributes.

Known marginal distributions rj for categories are applied for the 
minimization problem to restrict the estimation of π̂i. Because this 
problem cannot be solved directly, they proposed the standard IPF 
algorithm to find the estimator.

Later, Ireland and Kullback showed that the IPF estimators actually 
minimize the discrimination information (11):
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where l(π̂; p)is the discrimination information function of the sample 
distribution π and the estimated distribution p. With the Lagrange 
multipliers method, the least squares estimates can be shown to 
take the following form:
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where λj are multipliers corresponding to the linear constraints. 
Meanwhile they also showed that if the expansion factor α for 
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The work of Ireland and Kullback is important because it proved 
the convergence of the IPF procedure toward the estimate for the 
minimum discrimination information.

Along the same line, this algorithm can be expanded to satisfy mul-
tiple levels of marginal constraints by counting the number of persons 
in each household with the constrained attribute. Then, Equation 1 can 
be rewritten as

p

p
i i

ii

ˆ 2

∑ ( )− π

subject to

R r j Ji ij j

i j
∑π = =



 ∈

ˆ for 1, 2, 3, . . . , (5)

When only one level of constraint needs to be satisfied, Rij indicates 
whether cell i belongs to category j. For the problem with multiple 
levels of constraints, Rij can be used to convert the cell values for 
households to corresponding individual-level estimates. Thus, Rij can 
be defined as

1 for and belongs to a household-level
attribute

for and belongs to an individual-level
attribute

0 otherwise
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where m is the number of agents that need to be estimated and nj 
is the number of agents of another type whose constraints j need 
to be satisfied jointly by the minimization. Lj is easy to obtain by 
converting attributes of one agent type to corresponding attributes 
of another agent type if the relationship between the two agent types 
is clear. For example, gender as an individual attribute can be con-
verted to two separate household attributes (e.g., number of males 
and number of females in a household). Then, Lj is 1 if the category 
is one male, 2 if the category is two males, and so on.

Lagrange multipliers provide a way to find the local optimizer for 
the objective function (5). By transforming the equality constraints, 
Function 5 becomes
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allows one to find the estimators of π̂i by simultaneously solving the 
Lagrange factor parameters λj for all categories of household-level 
and individual-level constraints. It can also be seen that Equation 6 
has a form similar to that of Equation 3, except for the constant Rj. 
Thus, it also can be solved by the IPF procedure. Now assume that 
αj = exp(−Σjλj − 1) again, then π̂i/pi = αj

Rj. According to Equation 4 
and by analogy, it can be seen that the expansion factor is α j

Rj. Thus, 
in the iterative procedure, the expansion factor for category j of 
iteration t can be updated by solving
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Note that π̂̂i
t−1 denotes the distribution of the agent type that is the same 

as the one constrained by rj. Thus when rj is a marginal constraint 
applied to individuals, Equation 8 becomes
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where π̂i
t−1 is the distribution of households.

In this case, to find the expansion factor, a nonlinear equation 
needs to be solved in each iteration when the agent type of constraint 
is different from the agent type being estimated by the IPF procedure. 
A more rigorous proof on convergence can be provided by following 
Ireland and Kullback (11). [Also see Farooq et al. (21).] That this IPF 
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approach is not intended to simultaneously fit joint distributions of 
characteristics of multiple agent types also needs to be made clear. 
Instead, it is intended to estimate the joint distributions of one agent 
type without violating constraints for other agent types that have 
associations with the estimated agents. The strength and limitation of 
this IPF procedure will be further discussed in the following sections.

New Population Synthesis Approach

For the generation of a representative population at the most dis­
aggregated level possible, a two-step population synthesis approach 
is proposed as in Figure 1:

1.	 First-stage IPF. Fit the joint distribution of selected household 
and individual attributes simultaneously for each spatial aggregation 
level at which reliable marginal totals are available through the general 
IPF method. Populate each disaggregated cell with the fitted number 
of households (and their full complement of attribute detail) by draw­
ing randomly from those households in the microdata sample whose 
attributes match the marginal characteristics required for that cell.

2.	 Second-stage assignment. Locate each of these households at 
a more disaggregated spatial level by using a second IPF that tries 
to match the spatial variation estimated from the microdata sample 
and other available data.

As illustrated in Figure 1, at the second stage, the synthetic 
households generated from the first stage can be assigned to a more 

disaggregated spatial level with the help of more spatially detailed 
marginal distributions, either obtained directly or estimated from 
available data sources. A detailed description for each of these steps 
is provided in the following.

Population Generation with Aggregated 
Marginals Estimating the Joint Distribution  
of Households and Individuals

Step 1.A is to use the general IPF method described in the previous 
section to estimate the joint distribution of households’ attributes 
taking into account the marginal constraints for selected individual 
attributes. Selected individual attributes are converted to the num­
ber of constituent members with corresponding attributes in house­
holds. The gender of individuals becomes the number of males and 
the number of females in households. As a result, each category of 
the individual attribute becomes a controlling attribute at the house­
hold level. Thus, when individual attributes having many categories 
are included as marginal constraints for household-level fitting, the 
dimensionality of the household-level constraints increases signifi­
cantly. This approach limits the number of individual attributes that 
can be constrained.

As mentioned in the previous section, in most cases only the 
marginal totals for total males and females are available. It is rare to 
see marginal totals for categories such as households with two males 
or households with three females. Thus, in the fitting procedure, 
Equation 9 needs to be solved and the solution for the parameter α 

Step 1.A Estimate Joint
Distribution of HHs and
Individuals

Samples

POP1

POP2.A

POP2.B

Marginal totals
(aggregated level)

Individual
microdata

Households
microdata

Seed array

General iterative
proportional fitting

General iterative
proportional fitting

Classifier:
discrete choice

model

Estimated marginals of
other attributes at building

level from fitted models

Randomly draw matching
household types from the

microdata

HHs’ and inds’ joint
distributions

Marginal totals for
HH characteristics

Marginal totals for
ind characteristics

Existing
HH types

Seed array
(from samples)

Observations
(from samples)Building or parcel

data

Capacity at
building level

Find and sample the most similar existing
households based on the similarity measures

Yes

Marginal totals
of HHs types

No

Step 1.B Draw HHs and
Individuals from Microdata
Samples

Step 2 Allocate HHs to More
Disaggregated Geographical
Level

  2.A IPF with household type
and building or parcel capacity
marginal constraints.
  2.B In addition to 2.A,
include estimated marginal
distributions of other
attributes from fitted models.

FIGURE 1    Proposed population generation process (HH 5 household; ind 5 individual).
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needs to be generated to derive different expansion factors for 
different categories in the attributes associated with individuals. The  
expansion factor α j

Rj guarantees that when the total estimated dis-
tribution is inconsistent with the targeted distribution, the adjustment 
effect is greater for households with higher Rj. For example, if the 
estimated total males is greater than the marginal data on total 
males, then the households with more males will scale down more 
than the households with fewer males.

The equation box shows the pseudocode of the general IPF 
procedure applied in this step. In the contingency table used in IPF, 
each cell corresponds to the number of particular households of a 
type specified by a combination of constrained attributes of house-
holds and their individual members. Thus, at the end of this step, the 
frequencies and types of households that need to be replicated are 
known on the basis of the fitted contingency table.

Drawing Households and Individuals

The frequencies of cells fitted by the IPF procedure are decimal 
numbers rather than integers. Random numbers are generated to 
determine whether decimals are to be rounded up or down. In 
Step 1.B, existing household samples together with individual sam-
ples are replicated and drawn with no change on attributes except 
for locations. However, as a result of the relatively small size of the 
sample data, when the number of controlling attributes increases, 

the potential new types of households and individuals fitted by IPF 
will increase factorially. The issue can be mitigated by including 
structural zeros in the contingency tables during the fitting process. 
For those types of households that are realistic but cannot be found 
in the samples, one has to draw from samples that have the char-
acteristics most similar to the targeted ones. The similarity score is 
defined as follows:
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	 wi	=	weight of attribute i,
	 ti	=	estimated value of attribute i,
	 ti′	=	expected value of attribute i, and
	S(ti, ti′)	=	� per attribute similarity between two values for categori-

cal attribute.

A weight based on the confidence of the quality of correspond-
ing attributes in the sample data is used to account for the mea-
surement errors arising from data incompleteness. For example, 
household income is usually aggregated from categorical individual 
income. Thus, the weight of household income attributes needs to be 
discounted when the similarity measure is calculated.

The simplest way of measuring similarity between two values 
for the categorical attribute is the overlap measure, which gives a 
value of 1 if two values are matching and 0 otherwise. However, 
the frequency distribution of the categorical attribute should also 
be considered when the similarity measure is calculated. Therefore, 
besides the overlap measure, other categorical measures may also be 
considered (23).

Allocation to More Disaggregated Spatial Level

The synthetic population generated from Step 1 satisfies con-
straints at the aggregated geographic level. This level is not suf-
ficient for the agent-based microsimulation, which demands that 
the spatial heterogeneity of agents’ characteristics be captured at 
the fine-grained spatial level. Although marginal totals of agents’ 
characteristics at the building or parcel level are rarely available, 
the capacity information can sometimes be extracted from other 
data sources such as building floor area. This approach can help 
to assign households to buildings through a second IPF procedure 
(Step 2.A). Incorporating building size constraints in the first IPF 
procedure and doing a multiple spatial level fitting are theoretically 
possible, but computationally difficult because of the exploding 
dimensionality of the building size–level marginal controls.

Further, it is possible to estimate the marginal distribution of 
other agents’ characteristics at the building level on the basis of their 
correlation with building characteristics. For example, to estimate 
the marginal distribution of household income at the building level,

income, building income building building (11)P P P( )( ) ( )= ×
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p

t

k K

k

j k

j

j
r

j
r

k

R r

j

t t

j i
t

i j

j

j

i
t

i
t j

j

i
t

i j

j
R

k

i
t

i
t R

n

j

j

∑

∑

( )π =

=

=

∈

π = π

π

π = π ×
π

α π α =

π = π × α

= +

π

+ −

∈

+

−
+

−

∈

−

Set ˆ seed table from samples ;

Set 1;

For constraint attribute 1, 2, . . . ,

If is a household level attribute,

for category ,

Calculate estimated marginal totals for ,
ˆ ˆ

Calculate expansion factor for ,
ˆ

Expand the value of cells belonging to ,

ˆ ˆ
ˆ

If is an individual level attribute,

solve for unknown parameter , ˆ

Expand the value of cells belonging to ,
ˆ ˆ

Set 1 and repeat the process until convergence
is reached;

return ˆ

0

1

1

1

1



Zhu and Ferreira� 173

According to Equation 11, given the distribution of building char-
acteristics, one needs to know only the conditional distribution of 
household income on buildings. The conditional distribution can be 
estimated by a discrete choice model drawing on the sample data and 
available building information. Including estimated marginal distribu-
tion of household income in IPF will account for the spatial variation of 
households’ location choices based on their income and thus generate 
a more realistic synthetic population (Step 2.B). In Step 2.B, the IPF 
procedure and the estimation of a conditional distribution of agents’ 
characteristics are conducted zone by zone to capture the locality.

Synthetic Population Generation  
for Singapore

Data Sources

The proposed population synthesis approach was applied to gener-
ate a synthetic population of 1.29 million households and 3.9 million 
individuals for 1,092 traffic analysis zones (TAZs) and more than 
10,000 residential buildings in Singapore in 2010. The TAZs belong to 
55 large planning districts, the level at which marginal data of house-
hold and individual characteristics are available from the Singapore 
Census 2010. For the microdata sample, in the case of Singapore, 
the Household Interview Travel Survey (HITS) data collected in 2008 
by the Land Transport Authority were used. The HITS data col-
lected demographic and travel information on 10,840 households 
and 33,000 individuals, which accounts for about 1% of the total 
population in Singapore (of citizens and permanent residents).

Although the marginal data from the census are quite spatially 
aggregated, it was possible to combine these data with other sources 
to estimate the disaggregated household and individual counts at the 
individual buildings scale. Postcodes and geographic information 
system data with building footprints were available from commercial 
sources (Navteq and GeoPostcodes). Data on housing unit types and 
capacities were obtained from web services provided by the Housing 
Development Board. Average property values and the age of buildings 
were extracted from the REALIS data sets, which record all housing 
transactions from the late 1990s to 2012. Buildings with missing 
information on property values and age take information such as 
price per square meter from nearby buildings in the same real estate 
development project. The pairing of buildings follows the assumption 
that buildings having close postcodes and similar addresses belong 
to the same development project.

Selection of Constraint Attributes

The constraint attributes are selected to allow differentiation of 
agent population attributes that are critical to subsequent behavioral 
choice models, while also limiting the dimensionality of the fitting 
procedure to reduce computational effort. Each of the constraint 
attributes must be available in the sample data set and the census 
marginal data (Table 1).

Evaluation Approach

For an understanding of the performance of the approach in this 
paper under situations in which the sample size is small and mar-
ginal data are aggregated, a series of tests are conducted. In this 

case, the HITS data set is considered as the known test population 
and the microdata samples are randomly generated with a sampling 
rate of 10%. Synthetic populations are generated following the 
same two-step procedure for all tests. Because of time and space 
limitations, in the third step the focus is on a single planning district, 
Ang Mo Kio, one of the older towns outside the central business 
district of Singapore.

Synthetic population realizations are compared at four differ-
ent stages of the procedure to examine how well the marginal 
distributions of the real population are reproduced. Results are 
also compared across different spatial levels to test the sensitivity 
of spatial effect on population allocation. The generated popula-
tions are validated against the test population (the HITS data set) 
at the TAZ level after all of the synthetic households are assigned 
to buildings. As will be explained later, this test is less than ideal 
since the 1% HITS sample need not be an accurate representation 
of the TAZ-level distribution of household attributes. Nevertheless, 
more disaggregated data are not available, and this approach allows 
one to compare the spatial pattern produced by this method with 
that of the 1% sample.

The following are the four stages at which the synthetic population 
is examined:

1.	 Pop0. The synthetic population realization produced by fit-
ting only household-level constraints. (Constraints on building 
capacity and number of individuals are ignored, and households 
are assigned only to those buildings whose postcodes appear in 
the HITS sample.)

2.	 Pop1. The synthetic population realization produced by fitting 
both household- and individual-level constraints at the planning dis-
trict level. Constraints on building capacity are ignored, and house-
holds are assigned only to those buildings whose postcodes appear 
in the HITS sample.

3.	 Pop2.A. The synthetic population realization generated from 
Step 2.A. Building capacity and household types are constrained 
when households are allocated to buildings.

4.	 Pop2.B. The synthetic population generated from Step 2.B. 
Income distribution constraints are added to the constraints in 
Step 2.A.

See Figure 1 for the corresponding procedural step generating each 
type of outcome.

Standardized root mean square error (SRMSE) metrics, defined 
to measure the divergence of an estimated distribution from the 

TABLE 1    Description of Selected Constrained Attributes

Attribute Categories

Household size 1, 2, 3, 4, 5, 6+
Household incomea <$1,000, $1,000 ∼ $1,999, . . . , >$10,000

Number of workers 0, 1, 2, 3, 4, 5+
Dwelling type HDB (2 and 3, 4, 5+), condo and private flat, other

Ethnicity Chinese, Malay, Indian, other 

Gender Male, female 

Age 0–4, 5–9, 10–19, 20–34, 35–49, 50–64, 65+

Note: Spatial level of constraints for all attributes is 36 planning districts;  
55 planning districts were combined to make 36 in the aggregated marginal data 
provided by Singapore Census (2010). HDB = Housing and Development Board.
aCategories = Singapore dollars (S$1 = US $0.679 in 2008).



174� Transportation Research Record 2429

actual distribution, are used to measure the goodness of fit of the 
synthetic population realizations (22). SRMSE can be computed as
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where

	 N	=	 total number of cells,
	 π̂i,...,j	=	estimated frequency of cell (i, . . . , j),
	 πi,...,j	=	corresponding frequency from the real population, and
	 m, n	=	number of categories for attributes (i, . . . , j).

N is, in the present case, the number of cells specified by joint dis-
tribution of attributes (i, . . . , j) included in the results comparison. 
SRMSE takes the value 0 when the generated population count 
matches with the real population count in regard to the marginal 
or joint distribution being tested. The goodness of fit reduces as the 
SRMSE value increases. However, one issue of the SRMSE mea-
sure is that it will increase as N increases even if the count difference 
does not change. Thus, when SRMSE is applied to measure a sparse 
high-dimensional matrix, the resultant value is usually high.

In this evaluation stage, the SRMSE value was calculated for the 
joint distribution of a number of important household and individual 
attributes, including dwelling type, household income, household 
size and number of workers, gender, and age groups at the plan-
ning district, TAZ, and building levels. The SRMSE value measures 
the extent to which this paper’s synthesis of the population of Ang 
Mo Kio results in different spatial-level subtotals that match those 
observed in the 1% HITS survey. There is considerable variation in the 
joint distribution of attributes-by-TAZ and attributes-by-buildings 
observed in this HITS sample, so one would not expect that the 
synthesis of building populations, constrained only by planning  
district totals, would match the HITS sample at further disaggregated 

spatial levels exactly. The SRMSE results, while less than ideal, pro-
vide some indication of how well the Stage 2 methods can account 
for the fine-grained spatial variability that is evident when detailed 
building capacity and price information are overlaid with typical 
travel surveys.

Table 2 presents the SRMSE values of 12 population realizations 
(four interpolation methods at three levels of spatial disaggregation) 
when tested against the real population for the Ang Mo Kio Plan-
ning District. Interpreting the numbers can be tricky. For example, 
for the POP0 method, the observed HITS joint distributions of attri-
butes at different spatial levels are computed from the 540 HITS 
observations that resided in Ang Mo Kio. For households, the joint 
distribution of five attributes, which amounts to 1,500 combina-
tions, is obtained. For individuals, only the joint distribution of two 
attributes (gender and age groups) is assessed. These joint distribu-
tions from the HITS sample are treated as real and then compared 
with the corresponding distributions that result when the IPF in 
POP0 is used to expand a 10% sample of the HITS households and 
assign them to individual buildings in a way that still tries to match 
the Ang Mo Kio District totals for the 540 HITS households. Build-
ings not observed in HITS are ignored in this test for the purpose 
of the goodness-of-fit discussion, even though they are used in the 
proposed method.

Even though the average absolute percentage difference (a method 
measuring the percentage-based discrepancy between two distri-
butions) for all marginals during the IPF procedure is well below 
0.01 in the IPF procedure, the resultant SRMSE error is 2.2852 for 
households’ joint distribution in the planning district–level house-
hold count for a 10% sample (i.e., a random 60 households from the 
540 Ang Mo Kio households in the HITS data). The average error 
increases to 9.1879 when computed for the eight TAZs in Ang Mo 
Kio and to 27.1078 for the 134 buildings in Ang Mo Kio. The vari-
ance of the error is also significant, especially at the building level. 
For individuals, the SRMSE error value is 0.2931 in the planning 
district, 0.9538 in the TAZs, and 3.7279 in buildings. The errors 
for individuals are much smaller than those for households, as the 

TABLE 2    Comparison of Goodness-of-Fit Results for Population Generations in Ang Mo Kio

Householdsa Individualsb

Population 
Stage

Planning District
(Ang Mo Kio) TAZsc Buildingsd

Planning District
(Ang Mo Kio) TAZsc Buildingsd

POP0
  Mean 2.2852 9.1879 27.1078 0.2931 0.9538 3.7279
  SD na 4.7647 56.0063 na 0.3940 12.0680

POP1
  Mean 2.1426 8.9714 25.7046 0.1848 0.9095 3.3391
  SD na 4.8457 41.4213 na 0.3164 7.4652

POP2.A
  Mean 2.3205 6.3912 13.9610 0.1953 0.8843 3.1576
  SD na 6.4159 4.5691 na 0.3637 5.9925

POP2.B
  Mean 2.3507 6.1176 11.0985 0.1953 0.8840 3.0270
  SD na 6.2920 4.0376 na 0.3746 5.7823

Note: SD = standard deviation; na = not applicable.
aCombinations of attributes = 1,500. Includes household size, household income, dwelling type, ethnicity,  
and number of workers.
bCombinations of attributes = 16. Includes gender and age group.
cNumber of cells = 8.
dNumber of cells = 134.
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SRMSE for households’ joint distribution accounts for the divergence 
over a much larger size of cells.

A comparison between POP1 and POP0 shows an evident improve-
ment of individual joint distribution at the planning-district level 
(from 0.2931 for POP0 to 0.1848 for POP1), which is expected since 
POP1 includes individual-level marginal constraints in the Stage 1 
IPF while POP0 does not. For individual distribution into TAZs and 
buildings, the improvement still exists although not as significant in 
regard to rate.

Because of the thin sample, limited marginals, and vast number 
of cells, the POP0 and POP1 measures are understandably large, 
especially at the TAZ and building level. Also, the expected cell 
counts are small and the randomized rounding (to ensure integers) 
adds to the SRMSE error. Meanwhile, one can see that when building 

capacity and dwelling type are constrained at Stage 3 (POP2.A), the 
goodness of fit improves not only at the building level but also at 
the TAZ level. The improvement is more evident for households’ 
joint distribution, indicating that more of the household characteris-
tics are correlated with buildings than with individuals. In addition, 
the variance of the SRMSE error for households in the buildings 
decreases significantly. This finding may suggest that the inclusion 
of building capacity and dwelling type reduces the randomness 
and arbitrariness of household allocation that may be seen in POP0 
and POP1.

Figure 2a shows Singapore, the TAZ boundaries, and the build-
ings that housed the 540 households in the HITS sample of Ang Mo 
Kio. Figure 2, b and c, shows the SRMSE errors at the household and 
individual levels, respectively, for the POP0 and POP2.B methods. 

(a)

(b)

(c)

FIGURE 2    Goodness-of-fit results of test synthetic populations for Ang Mo Kio for  
crude (POP0) and refined (POP2.B) methods: (a) spatial hierarchical levels of Singapore,  
(b) goodness of fit for joint distribution of household attributes, and (c) goodness of fit  
for joint distribution of individual attributes.
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In both cases, the errors are fewer and more randomly distributed for 
the POP2.B results.

The goodness of fit is also improved by including (in POP2.B) 
the estimated marginal distribution of income as one additional 
dimension of constraint when households are allocated to buildings. 
Again, this improvement is more pronounced for households. The 
discrete choice model used to estimate the marginal income distri-
bution of buildings included explanatory variables such as average 
transaction price, distance to the nearest subway station, and unit 
type and had an R-squared of about 20%. Nevertheless, the sample 
10% of HITS observations is used to fit the discrete choice model, 
so one is likely to be better off using 100% of the observed HITS data 
to estimate the POP2.B model for constraining the household income 
distribution by building when the full population of Ang Mo Kio 
is allocated.

The test result needs to be interpreted with caution. Because of 
the small size of the samples in the test compared with the fea-
sible combination of controlling attributes, the estimated errors are 
overstated. Also, the approach contains two IPF procedures. Cor
respondingly, two random rounding procedures need to be conducted 
to convert decimal frequencies to integer counts. For the micro
simulation seeding, the same procedures are applied to expand the 
540 HITS samples in Ang Mo Kio to the full population of that plan-
ning district (and likewise for all 36 populated planning districts). 
Therefore, the full Singapore population synthesis is much less 
affected by the integer rounding and uses discrete choice models 
calibrated with much more data for each planning district.

Validation

With building size information obtained from multiple sources and 
the estimated income distribution conditional on buildings, it was 
possible to generate the synthetic population at the building level for 
Singapore. Because the marginal distribution at the building level is 
not readily available, the estimated household counts at the TAZ level 
from the Land Transport Authority were used to assess the spatial 
distribution of the synthetic population results. Out of 1,092 TAZs, 
household counts of 574 TAZs are less than 5% different from the 
estimates of the Land Transport Authority. The average absolute per-
centage difference between the two data sets is 10.7%. Considering 
the imperfect building information, nonsynchronous data sources, 
and the fact that estimates from LTA are also approximated values, 
the comparison result at the unconstrained TAZ level is acceptable. 
(Microdata HITS were collected in 2006. Marginal constraints at  
the planning-district level come from the 2010 SingStat Census. The 
building information was collected more recently in 2012.) As more 
reliable and detailed data start to become available for the project, fur-
ther validation of the proposed methodology against known marginal 
or joint distributions at fine-grained spatial levels will be conducted.

Conclusions

The execution of agent-based microsimulation requires an initial set 
of agents with detailed socioeconomic and demographic attributes 
to support the subsequent behavioral models and market models. 
However, data limitations and privacy reasons restrict the scope 
and detail with which the entire population can be observed. The 
objective of the population synthesis procedure is to expand a small 
microdata sample, by using patterns observed in aggregated data, to 

generate a synthetic population that is close to the real population in 
attribute distributions and correlations that are particularly relevant 
for the agent behavior that is being simulated. With the development 
of agent-based microsimulation, the requirement for the accuracy and 
spatial resolution of synthetic population is increasing. The relation-
ships between different types of agents also need to be specified in 
realistic ways. These requirements make it necessary to consider new 
data sources and interpolation methods to enable population synthesis 
at more disaggregated spatial levels.

Recent advances in web-based services, crowdsourcing, and 
the availability of geographically registered data sets have greatly 
expanded the amount of relevant, independently available data that 
can be of assistance in constructing disaggregated synthetic popula-
tions. Mining these public and private big-data sources can identify 
spatial and socioeconomic patterns across households, individuals, 
jobs, and so forth that can make it practical to construct synthetic 
populations at the household and building scale. These new data 
sources can also support urban microsimulation by enriching models 
with more realistic heterogeneous behaviors and spatial details. 
However, those readily available data sets are very often not perfect 
for the research at hand. The barriers include the quality of the data 
resulting from incompleteness, privacy, cross-referencing difficulties, 
and other technical issues. Finding ways to enhance the value of tra-
ditional surveys and methods through the use of these new data sets 
and computational techniques is challenging but timely and valuable.

This paper presents a new population synthesis approach aimed at 
improving the spatially disaggregated accuracy of population gener-
ation by using limited microdata and rich, diverse sets of aggregated 
marginal data. A general IPF method was used to estimate the joint 
distribution of households’ and individuals’ characteristics under 
multiple levels of constraints at the level of planning districts for 
which certain marginal constraints are available. To improve the spa-
tial detail of the synthetic population, additional building location, 
attribute, and occupancy information was collected from multiple 
sources and used to constrain housing locations by using a second 
IPF procedure that addresses building capacity as well as spatio
demographic patterns estimated by using a discrete choice model. 
The procedure yields realistic spatial heterogeneity while preserving 
some of the joint distribution of household and locational charac-
teristics. As the test results show, the proposed two-step IPF-based 
approach does yield better fits at more fine-grained but unconstrained 
spatial levels than do traditional population synthesis methods. This 
research represents one of the efforts to find practical methods and 
algorithms to combine new data sources with traditional data sources 
to piece together the knowledge about entire populations in ways that 
preserve much of the spatial and attribute interactions.
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