Aaron Bell's Personal Research Web page for

Mission 2006


Solving Complex Problems

Team 5: Land

Wednesday, October 30, 2002

        This week began with follow ups to sever unanswered questions from the preceding weeks, but the majority of my effort went into a first draft characterization.  I did my damnedest to come up with a Characterization of the Amazon Basin in terms of the soil's physical qualities and formations.  It is available here in html format.  This is only a first draft and will be seeing severe revision (as well as more complete references) as well as melding with other land related characterizations in order to produce a comprehensive description.

Questions Answered:
Data, Timeline:  The main database we have draws most of its figures from RADAMBRASIL, which was published by the government in 1981, there is also however some referenced material dating back to 1976 from the ministry of mining and energy, it is unknown what exactly they got from this source, and weather it was time sensitive.  Several different inquiries did not reveal a more recent study under the Auspices of UNESCO or the FAO
Erosion: Aeolian is only a factor in brazil on the beaches, mainly in the shifting of sand dunes.  it is not a matter we should even concern our selves with
Bedrock: Pre-Cambrian Bedrock should not be an issue, there is very little loose or mobile rock in the amazon soils or on the surface, (the rarity of rocks made and still make them a form of currency in certain parts of the Rain forest.
Erosion systems process: http://www.unu.edu/unupress/unupbooks/uu27se/uu27se04.htm this site has everything on erosion and soil conditions in humid tropics (i.e. rain forests not including canada)!
Stability: Clay soils, which are the majority of the Basin, about 4 km thick, are unstable, and have a tendency to sink and settle unevenly.  This has made many major construction efforts in the amazon difficult, such as the failed Trans-Amazonian Highway
Today Eva, Jonathan and I attended a meeting which began to outline the structure and nature of our final presentation.  This is not only helpful in determining what we really need from our groups, but is also a huge motivation to get informative characterizations written, distributed (via group web pages?) and understood as soon as possible (preferably made available by the end of friday, and all read before monday).  Do not forget to visit the GOALS page, linked from the yellow GOALS in the upper right.

Wednesday, October 23, 2002

    This week has been dedicated in large parts to the pursuit of one thing, NUMBERS .  On the up side, we were able to convert the massive collection of data on the Amazon soils, on the down side, It is nearly 300 printed Mmmmm.....Dirt pages, so I have barely scratched the surface in my effort to  characterize the soils.  In other news, my lack of rigorously proven data (aka scientific journal articles) has been remedied,  but once again, I have yet to sift through the  sixteen articles that I found particularly relevant to our teams perspective on the amazon (I you are curious, or on my team, and would like to assist me in analyzing these articles, because they are probably relevant to you too, just go to http://web.mit.edu/ahbell/www/ , they are numbered 01-16, and are in Acrobat Reader Format).  In terms of future work (post characterization), I have several articles about alternative farming processes, the feasibility and soil requirements for limited reforestation, and the viability of rehabilitating or enhancing the soil itself, which I must read thoroughly in order to understand.  If you are brave and would like to venture in to the data we are primarily working with, or if you know Portuguese and would like to translate/explain the column headings, please do so, just click here .  Finally I have the chance to "get my hands dirty" with this confirmed data, that actually means something.  No more ambiguous and misleading statements, only statistics can lie to me now.

Wednesday, October 16, 2002

The majority of the Amazon is classified under a single umbrella both in terms of soil and vegetation; however this is primarily because not enough exploration and recording has been done to accurately differentiate the zones.  (Click on the map for more information on deforestation).
 Map of South American Vegitations

Historically the Amazon was an inland Sea, but now days it is covered in poor soils “lacking nitrogen, phosphates and potash ( http://www.lagamar.com/Pages/ama_geog.html ).”  Alluvial flood plains on the north and west edges are significantly richer due to annual silt deposits.

According to a German study in the Amazon Flood plain ( http://www.atb-potsdam.de/abteilungen/abt1/pdf/amazonas2.pdf ), the lack of nitrogen in the soil is largely countered by high levels of nitrogen derived from the atmosphere being held in trees.  Luckily these nitrogen sinks are not tied to the seasonal flooding as many had suspected, instead they are largely dependent on species and site conditions (other than flooding).

The world over, there has been established a relationship between the percentage of forest coverage and the population density according to the United Nation’s Food and Agriculture Organization (FAO, see http://www.fao.org/sd/wpdirect/wpan0030.htm ).  Within the Amazon, this trend is demonstrated with a high resemblance to “wet ecological zones” across the world.  Also in the Amazon, the areas with the highest rates of deforestation are also experiencing the highest acceleration of deforestation; the danger areas are only becoming worse.

As a major consequence of deforestation, a combination of surface runoff and soil leeching cause the topsoil to become infertile, and unable to rejuvenate or restore the damaged or destroyed forest ( http://library.thinkquest.org/26993/consequences.htm ).

According to organizations such as Green Peace, in the last 30 years, an area the size of France has been carved out of the Amazon, and the rate of deforestation is only increasing ( http://eces.org/articles/static/98990280082136.shtml ).  If the land is not suitable for farming or ranching, as research has indeed shown, then this land will need to be abandoned for more freshly cleared Amazon in the near future, only furthering the problem in order to sustain economic growth.

Erosion is the result of some of nature’s most powerful forces, the wind, water and gravity constantly wearing away at any surface they come into contact with.  Erosion has been dealt with in a variety of ways in the past, but the appropriate solution for a region is highly dependent on the specifics of climate and the existing land forms.  While erosion stands as a negligible threat to standing Rain forest, it is a primary symptom and excellent indicator of recently deforested areas.  It is also the greatest enemy in any reforestation, or land fertility stabilization efforts that may be made in the Amazon.  It is a matter that needs to be further discussed at length ( ).

Much can be learned from satellite analysis, such as this image of the Amazon River’s geomorphology (click on the map for additional images).

 Satellite Image of Flood Plain

Things are looking up for our monitoring options, as a late 1998 study ( http://www.fao.org/sd/eidirect/eire0008.htm ) indicates that a combination of existing data and satellite observations would allow erosion mapping in the Amazon.  The pilot program was conducted in Brazil, and suggested that the mapping and data integration could be done for $5.30-$8.06 each square kilometer, with overall economic gains far surpassing these expenses.

The soils of the Amazon are in a manner of speaking, a “wet desert,” ( http://www.personal.psu.edu/users/j/m/jmh280/page1.html ) meaning that there are virtually no nutrients in the soil itself.  There is however, at layer of humus several inches thick on the surface that consists of rapidly decaying organic matter, and supplies the nutrients that plants rapidly absorb.  This shallow layer of viable matter causes the roots to be very shallow and outspread, interlocking with neighbors.  It is a very quick and easy transformation from this flourishing tropical jungle to a barren desert of clay and barren earth, turning the wet desert into a dry one.

This may be of interest not only to my own team in respect to Land, but also to Water, and Systems Interaction due to the plant available water, and the use of modeling (the availability of raw data is a definite plus).  So by using a record of previous profile samplings and digitizing them to a common standard, they were able to model not only the water content  of the soil, but also the sand, silt, clay, pH, and carbon levels.  To view the maps and raw data, click here .

Research suggests that in some years the Amazon emits more CO2 than it absorbs contrary to popular belief.  It is strongly suspected ( http://news.bbc.co.uk/1/hi/sci/tech/236276.stm ) that the moisture content of the soil, largely a function of porosity and hydrology, is the dominating factor in deciding weather the forest absorbs enough CO2 to out run its emissions.

It has long been known that mercury contamination has plagued the Amazon region’s flora and fauna (including the native inhabitants).  For a long time that issue had been blamed on the mercury and other heavy metals used in the gold mining process, but a 1994 joint Canadian-Brazilian study ( http://www.idrc.ca/books/reports/1997/19-01e.html ) seemed to divert the blame from the mining industry and point towards millennia of natural mercury build up in the soils across the region.  Recent deforestation and as a result accelerated erosion, have unleashed years trapped mercury upon an unprepared ecosystem.

Follow this link to my previous, less glamorous, but still possibly useful  (web page has some good links not deemed important enough to include here)To the Old Main Page

Official MIT Seal

With questions or comments, write to page creator Aaron Bell at ahbell@mit.edu .
Last Updated: Wednesday, 30 October, 2002

True International Time, Across the Universe