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INTRODUCTION 

Thermal maturity is a measure of the level of thermal alteration of organic matter in 
sedimentary rocks. Inasmuch as different types of organic matter respond differently to 
heat, thermal maturity is operationally defined differently for different substances. 
Accordingly, many organic and mineral indicators of thermal maturity have been proposed 
and, to a certain degree, crosscorrelated (see, for example, Hood and others, 1975; Scholle 
and Schluger, 1979; Héroux and others, 1979). The thermal maturity of organic matter 
provides a means of ascertaining the maximum temperatures to which sedimentary rocks 
have been exposed. Diagenetic or low-grade metamorphic temperatures, in regions where 
igneous or hydrothermal heat sources have been insignificant, are largely a reflection of 
burial heating. The level of thermal maturity of rocks at the surface can thus be used to 
infer relative uplift and erosion subsequent to maximum burial, providing valuable insights 
into tectonic processes and histories. In addition, the maximum temperature to which 
sedimentary rocks have been exposed is an important parameter in evaluating hydrocarbon 
potential.

VITRINITE REFLECTANCE

Vitrinite is one of several types of organic matter commonly disseminated in clastic 
sedimentary rocks. Representing the remains of woody plant material, vitrinite is the major 
constituent of most coals and is abundant in most terrestrially derived shales. It is often 
present, although much less abundant, in coarser sediments, limestones, and marine rocks 
as well. Upon diagenesis, loss of volatile components and graphitization of carbon result in 
an increase in the reflectivity of vitrinite. Reflectivity increases regularly proportional to 
temperature, is not influenced by pressure or chemical reactions with most diagenetic 
waters, and is not susceptible to retrograde alteration (Bostick, 1979). Accordingly, 
vitrinite reflectance has become the most widely used measure of thermal maturity in 
sedimentary rocks. Recent kinetic models (Burnham and Sweeney, 1989; Sweeney and 
Burnham, 1990) and field studies in areas where the duration of heating has been well 
constrained (Barker and others, 1983; Barker, 1991) suggest that, for heating periods of 
greater than  approximately 104 years, maximum temperature and not the duration of 
heating largely determines the level of vitrinite reflectance. Vitrinite reflectance thus may 
be used, with caution, to establish absolute maximum paleotemperatures. Many workers 
have proposed equations relating temperature and vitrinite reflectance (Bostick, 1979; 
Price, 1983; Barker and Pawlewicz, 1986; Barker, 1988). We prefer the correlation of 
Barker (1988; T(ϒC)=104(lnRo)+148) as it most closely matches the results predicted by 
kinetic models (Burnham and Sweeney, 1989; Sweeney and Burnham, 1990).

Vitrinite reflectance is quantified by measuring the percentage of light reflected from 
randomly oriented polished vitrinite particles through the use of a photomultiplier 
photometer attached to a microscope and calibrated through the use of polished glass or 
mineral standards. Because an oil-immersion objective is used, the reflectance measured is 
that in oil. Vitrinite-reflectance units are, therefore, the percentage of light reflected in oil 
(Ro). Anisotropy of reflectance results from the structure of vitrinite and increases with 
increasing reflectivity (Stach and others, 1982). Accordingly, a vitrinite-reflectance 
determination involves measuring the reflectance of a number of  particles in random 
orientation and taking the mean value of the determinations. Determining the mean 
reflectance, occasionally referred to as Rm, involves identification of the indigenous 
vitrinite population, exclusive of recycled material. Such material is usually identified by 
constructing a histogram of individual vitrinite-reflectance measurements and isolating 
suspect material from the calculation of the mean. 

CONODONT COLOR ALTERATION INDEX 

Conodonts are toothlike microfossils of an extinct group of primitive vertebrates 
(probably related to jawless fishes), commonly 0.1 to 1 mm in length, that are found in 
marine rocks of Late Cambrian through Triassic age. They are common in carbonate and 
some marine clastic rocks, and their abundance generally varies inversely with 
sedimentation rate. Conodonts grew throughout the life of the animal by periodic addition 
of a relatively coarse lamella of apatite followed by a fine lamella of organic matter. 
During diagenesis, the organic matter sealed between transparent apatite lamellae becomes 
carbonized, producing visible color changes. Colors range from pale yellow, to amber, light 
brown, dark brown, and black corresponding to temperatures ranging from 50ϒ to 300ϒC 
(Epstein and others, 1977). Above 300ϒC, conodonts change from black to gray, to opaque 
white, and finally to crystal clear as a result of carbon loss, release of water of 
crystallization, and recrystallization. All of these color changes have been observed in 
natural samples and reproduced and calibrated by pyrolysis experiments in the laboratory 
(Epstein and others, 1977; Rejebian and others, 1987). The Condont Color Alteration Index 
(CAI) is the quantification of these color changes through the use of established standards.

SYNOPSIS OF THERMAL MATURITY PATTERNS IN ALASKA

This map was produced from nearly 10,000 vitrinite-reflectance and CAI 
determinations from surface, offshore, and subsurface localities across the state. From these 
data, a number of generalities can be made. For example, rocks exposed at the surface of 
the Tertiary interior basins and in the Aleutian forearc and backarc basins are uniformly of 
very low thermal maturity, indicating that these basins are at or near maximum burial, have 
seen little uplift, and are probably thermally immature with respect to hydrocarbon 
generation. In contra st, many sedimentary basins—for example, the Yokon-Koyukuk and 
Colville Basins—show elevated levels of thermal maturity at the surface, commonly with 
the highest values at basin margins. This geometry suggests a pattern of greater uplift along 
basin margins, possibly reflecting isostatic readjustments as crustal loads are removed by 
erosion.

Johnsson and others (1993) investigated thermal maturity relations in three 
sedimentary basins—the Colville, Cook Inlet, and Kandik Basins—in more detail. Thermal 
maturity patterns in the Colville Basin are broadly asymmetric, suggesting systematic 
differential uplift ranging from a minimum of no uplift at the Arctic coastline to 9 to 13 km 
of uplift in the central Brooks Range; even greater uplift further to the south is indicated by 
the presence of greenschist facies and higher grade metamorphism. This Johnsson and 
others (1993) investigated thermal maturity relations in three sedimentary basins—the 
Colville, Cook Inlet, and Kandik Basins—in more detail. Thermal maturity patterns in the 
Colville Basin are broadly asymmetric, suggesting systematic differential uplift ranging 
from a minimum of no uplift at the Arctic coastline to 9 to 13 km of uplift in the central 
Brooks Range; even greater uplift further to the south is indicated by the presence of 
greenschist facies and higher grade metamorphism. This pattern may reflect the deflexing 
of the lithosphere subsequent to the principal episode(s) of crustal convergence and 
thickening. The continuity of this pattern across the region suggests a similar thermal 
history for the proximal Colville Basin and the northern foothills belt. Thermal maturity 
isograds within the Brooks Range cut major thrust faults, indicating that maximum burial 
postdated the principal phases of thrusting. In contrast, isograds in the foothills belt to the 
north are broadly warped by local structure, indicating continued north-south shortening 
subsequent to maximum burial. A broad southward extension of thermally immature rocks 
in the central portions of the foothills belt suggests relatively young east-west shortening 
(parallel to the strike of the orogen), a feature that to date has not been included in regional 
tectonic syntheses. Alternatively, this thermal-maturity pattern could be explained by 
tectonically unrelated uplift episodes in the eastern and western parts of the Brooks Range. 

In the Cook Inlet Basin, vitrinite-reflectance isograds also are indicative of relatively 
greater uplift at the basin margins than at the basin center. The basin center appears to be 
presently at its maximum burial depth. Uplift in the Cook Inlet Basin may reflect 
compression along the faults bounding the basin. High thermal maturity along the western 
margin of the basin also may reflect magmatic heat sources from the Alaska Peninsula-
Aleutian Volcanic Arc. The Seldovia Arch, a major structural feature trending across the 
southern end of the basin (see Johnsson and others, 1993), does not appear to deform 
vitrinite-reflectance isograds, implying that deformation on that structure ceased prior to 
maximum burial (Johnsson and others, 1993).

In the Kandik Basin, a thermal-maturity anomaly—thermally mature younger rocks in 
fault contact with thermally immature older rocks—provides clues to the nature and timing 
of east-west thrusting. Mesozoic foreland basin deposits associated with thrusting buried 
Paleozoic rocks of the easternmost part of this fold-and-thrust belt to relatively shallow 
depths, driving potential hydrocarbon source rocks into the oil-generation window. The 
western foreland basin deposits were overridden by advancing thrusts and tectonically 
buried to as deep as 10 km. These disparate thermal domains are juxtaposed along the 
Glenn Creek Fault, which may represent a terrane boundary in east-central Alaska 
(Johnsson and others, 1993).

Although complicated by the effects of convective heat transfer by fluids and spatial 
variations in heat flow, thermal maturity data from sedimentary rocks isolated from igneous 
activity largely reflect burial heating and thus provide a means of assessing vertical 
movements in the upper crust. Thermal-maturity patterns in Alaska reflect the complex 
tectonic history of the region. The amalgamation of terranes with different thermal and 
uplift histories produces a patchwork of sharply contrasting thermal maturity. Sedimentary 
basins developed on these terranes record the history of terrane accretion through 
differential regional uplift. A varied thermal-maturity pattern in these deposits indicates a 
complex pattern of uplift that is not readily apparent from traditional mapping of 
stratigraphic and structural relations.
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