
Chapter

3 Orbital Dynamics

In 1608, Johannes Kepler (1571{1630) published two laws of planetary motion that he
deduced from an analysis of the accurate observational data he inherited from his employer,
the Danish astronomer Tycho Brahe (1546{1601). Ten years later, Kepler published a third
law called the Harmonic Law. These three laws, which �fty years later led Isaac Newton
(1642{1727) to the discovery of the law of gravitation, can be expressed as follows:

1. The planets move in ellipses, with the Sun at one focus;

2. The radius vector from the Sun to a planet sweeps out equal areas in equal times;

3. The period of revolution squared is proportional to the semi-major axis cubed.

The second law is the most general because it is true for any two-body central force
problem. The �rst law is a consequence of the fact that the gravitational force of one body

on another depends on the inverse square of their separation, and the third law re
ects the
fact that the gravitational force is proportional to the masses of the bodies. We will derive

Kepler's Laws from Newton's Law of Gravitation, and then will discuss what happens
when there are more than two bodies to consider.

3.1 Two-Body Central Force
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As a prelude to understanding the motions of solar system objects, we treat the
problem of two bodies that move under the in
uence of a mutual central force. Consider

two bodies with masses m1 and m2 whose position vectors relative to the center of mass
are r1(t) and r2(t), respectively. A central force is one that depends only on the di�erence

vector, r � r2 � r1 (where jrj = jr2
x
+ r2

y
j1=2) and its time derivatives

F = F(r; _r; : : :) : (3:1)

A conservative central force, like gravity, is one that can be expressed as the gradient
of a potential that depends only on the magnitude of the di�erence vector, jrj. We use

polar coordinates in which (x; y) = (rcos�; rsin�) and so jrj = [r2cos2�+ r2sin2�]1=2 = r.
In this system

F(r) = �r�(r) = �
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�
: (3:2)

Along with the di�erence vector there is a second natural position vector, the center of

mass of the system, R(t):

R(t) �

P
i
mi ri(t)P
i
mi

=
m1 r1 +m2 r2

m1 +m2

: (3:3)

where i represents the summation over the particles in the system. By expressing r1 and
r2 in terms of R and r :

r1 = R�
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r; (3:4)
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r; (3:5)

the kinetic energy K may be written:
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In Equation (3:6), the �rst term on the RHS corresponds to the motion of the center of

mass and the second term represents the motion about the center of mass. The quantity

� �

�
m1m2

m1 +m2

�
(3:7)
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is called the reduced mass of the system, which can be rewritten

1

�
=

1

m1

+
1

m2

:

Because there are no external forces in this problem, no equations of the motion for r
contain terms with R. The center of mass is either at rest or is moving uniformly, meaning

that this term is constant and can be dropped. Thus, for conservative central forces, it is
possible to express a two-body problem as an equivalent one-body problem, with

a center of force at the origin and with a single body of mass � located at a distance r(t)

from the origin.

3.1.1 Constants of Motion

For a body under the in
uence of a central conservative force, the potential is only a

function of the radial distance from the center of mass. The problem thus has spherical
symmetry in which any rotation about a �xed axis will have no e�ect on the solution. This

yields important simpli�cations. In a spherically symmetric system of the form

F(r) = F (r)
r

jrj
;

angular momentum, L, is conserved. In such a system r must be normal to the direction
of L, and the time rate of change of angular momentum, the torque, N, is zero:

dL

dt
� N = r� F = (r� r)

1

jrj
F (r) = 0: (3:8)

Consequently, the body will never be torqued out of its plane of motion. It is convenient to
use polar coordinates to describe this system. Let r and � denote the radial and azimuthal
coordinates, with corresponding unit vectors r̂ and �̂. A sketch of the geometry reveals that
the cartesian components of the unit vectors are r̂ = (cos�; sin�) and �̂ = (� sin�; cos�),
which implies the identities:

dr̂

d�
= �̂;

d�̂

d�
= �r̂: (3:9)

Since the position vector is a product of two functions, r = r r̂, the velocity vector becomes
a sum of two terms:

v �
d

dt
r =

d

dt
(r r̂) = _rr̂ + r

dr̂

d�
_� ;

= _rr̂ + r _��̂ ; (3:10)

where dots indicate time derivatives, and we have used (3.9) and the chain rule for di�er-
entiation. A second time derivative yields the acceleration vector:

a �
d

dt
v = �r r̂ + _r

dr̂

d�
_�+ _r _� �̂+ r �� �̂+ r _�

d�̂

d�
_� ;

= �r r̂ + _r _� �̂+ _r _� �̂+ r �� �̂� r _�2 r̂ ;

= (�r � r _�2) r̂ + (r ��+ 2 _r _�) �̂ : (3:11)
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Thus, the radial and azimuthal components of the vector equation of motion, �a = F,
are

� �r � � r _�2 = F (r) = �
d�

dr
; (3:12)

� r ��+ 2� _r _� = 0: (3:13)

This is a system of two second-order, ordinary di�erential equations. The constants

of motion that lead to the solutions for r(t) and �(t) are straightforward to �nd. First,
multiply (3:13) by r, and then rearrange the equation into the form d(� � �)=dt:

� r2 ��+ 2� r _r _� =
d

dt

�
� r2 _�

�
= 0: (3:14)

The constant of motion in (3.14) is the magnitude of the angular momentum, L:

jLj � L = � r2 _� = constant: (3:15)

Equation (3.15) will be used repeatedly in what follows to eliminate the term _� whenever
it appears. Our �rst opportunity is to eliminate _�2 from (3:12), after which we multiply
by the radial velocity _r:

� _r �r �
L2

�r3
_r + _r

d�

dr
=

d

dt

�
1

2
� _r2 +

L2

2�r2
+�

�
= 0: (3:16)

The new constant of motion revealed in (3.16) is the total energy, Etot:

Etot =
1

2
� _r2 +

L2

2�r2
+ � : (3:17)

The total energy is the sum of the kinetic and potential energies:

K �
1

2
� _r2 ; �e �

L2

2�r2
+� ; (3:18)

where �e is the e�ective potential energy. The term L2=(2�r2) arises from the cen-
tripetal acceleration term, �� r _�2, in (3:12).

3.1.2 Kepler's 2nd Law

Kepler's 2nd Law is equivalent to the conservation of angular momentum. To see this,
note that the di�erential area dA swept out by the radius vector when the body moves
through a di�erential angle d� is a triangle whose area is given by one-half its base times
its height as

dA =
1

2
(r d�) r: (3:19)
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Consider the areal velocity, which is the area swept out by the radius vector per unit
time. Conservation of angular momentum is equivalent to saying that areal velocity is

constant. We divide the di�erentials in (3:19) by dt and use (3:15) to obtain

dA

dt
= _A =

1

2
r2 _� =

1

2

L

�
= constant; (3:20)

which is Kepler's 2nd Law. If the motion is periodic with period � , then the total area

enclosed by the orbit is given by:

A =
1

2

L

�
� : (3:21)

3.1.3 Formal solution

For problems with three or more bodies, chaotic trajectories are part of the solution
space and it is impossible to write down a complete analytical solution. But, for the two-

body problem, there are a su�cient number of constants of motion, namely L and Etot,

to solve for r(t) and �(t). First, we can use (3:17) to solve for _r as

_r =
dr

dt
=

�
2

�

�
Etot � �(r)�

L2

2�r2

��1=2
: (3:22)

Next we may obtain an implicit formula for r(t) in the form t(r) by integrating (3:22) with
respect to r:

t(r) =

Z
r

r0

�
2

�

�
Etot � �(r)�

L2

2�r2

��
�1=2

dr ; (3:23)

where r0 is the radius at t = 0. In practice it is di�cult to invert (3.23) to obtain an
explicit formula for r(t), and so (3:23) is referred to as the formal solution. Even in
the case when t(r) cannot easily be inverted, (3:23) provides a framework for studying the
dynamics with powerful approximate techniques.

Assuming that we have found r(t) from (3.23), we can then obtain �(t) by integrating
(3:15), which leads to:

�(t) = �0 +
L

�

Z t

0

r�2 dt; (3:24)

where �0 is the azimuthal angle at time t = 0. The four constants of integration, r0, �0,
L, and Etot, can be determined from the initial position and velocity components, r0, �0,

_r0, _�0, and this completes the formal solution to the two-body central force problem. Note
that we have not yet speci�ed the form of �(r).

3.2 Inverse-Square Law

For an arbitrary central force the period of radial motion is not necessarily the same
as the period of azimuthal motion. If it is, then the orbit is closed. In 1873, J. Bertrand

showed that the only central forces that produce closed orbits for all bounded motions are
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the inverse-square law, F (r) = �kr�2 r̂, and Hooke's Law, F (r) = �kr r̂. The inverse-
square law applies to the mutual attraction of masses or electrical charges, and Hooke's

law applies to the small oscillations of springs. (For a proof of Bertand's theorem see
Goldstein, 1980, Appendix A, 601.)

To derive Kepler's 1st and 3rd Laws, we will now focus on the attractive inverse-
square-law force and its corresponding potential:

F (r) = �kr�2 ; �(r) = �kr�1; (3:25)

where k is a constant of proportionality. In order to determine the nature of the orbits
allowed by (3:25), it is convenient to set r = u�1 and write the equations of motion in

terms of u. With the following identities

_r = �
1

u2
du

d�
_� = �r2 _�

du

d�
= �

L

�

du

d�
; (3:26)

�r = �
L

�

d2u

d�2
_� = �

L2u2

�2
d2u

d�2
; (3:27)

the equation of radial motion (3:12), with the centripetal acceleration written in terms of
the angular momentum L using (3:15), becomes:

d2u

d�2
+ u = �

�

L2

1

u2
F

�
1

u

�
; (3:28)

after multiplying by ��=(L2u2). For the case L = 0, (3:28) blows up, but (3:15) implies
that this special case has constant � and just describes straight-line motion through the
origin.

Writing (3:28) for the inverse-square-law (3:25) yields

d2u

d�2
+ u =

�k

L2
: (3:29)

This is the same as the equation of a harmonic oscillator under the in
uence of a constant
force, where the angle � is playing the role usually played by time, t. The corresponding
homogeneous equation is

d2u

d�2
+ u = 0 ; (3:30)

which is solved in general by
u = u0 cos(�� �0) ; (3:31)

where u0 and �0 are arbitrary constants. By inspection of the inhomogeneous equation

(3:29), one solution is simply the constant solution

u =
�k

L2
; (3:32)
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which means that the general solution to this problem is:

u =
�k

L2
+ u0 cos(�� �0) ;

)
1

r
=

�k

L2
[1 + e cos(�� �0)] ; (3:33)

where e � u0L
2=(�k).

3.2.1 Kepler's 1st Law

The equation for a conic section in polar coordinates with one focus at the origin is

r(�) =
a(1� e2)

1 + e cos(�� �0)
:

Thus, (3:33) is the polar-coordinate formula for a conic section with the origin at one focus.
Depending on the value of the eccentricity, e, r(�) traces out a circle (e = 0), an ellipse

(0 < e < 1), a parabola (e = 1), or a hyperbola (e > 1). Corresponding to the extremes
of the cos(�� �0) factor in (3:33) are two turning points or apsidal distances fr1; r2g
that satisfy:

1

r1
=

�k

L2
(1 + e) ;

1

r2
=

�k

L2
(1� e) : (3:34)

For the case of a hyperbola there is only one physical turning point, r1, since e > 1 makes
r2 < 0.

Consider the case that describes an ellipse, 0 < e < 1. At the two turning points, the
radial velocity _r is zero, and therefore by the equation for Etot (3.17):

Etot =
L2

2�r2
�
k

r
; )

1

r2
�

2�k

L2

1

r
�

2�Etot

L2
= 0 : (3:35)

Solving (3:35) for r�1 using the quadratic formula yields

1

r1
=

�k

L2

 
1 +

s
1 +

2EtotL2

�k2

!
;

1

r2
=

�k

L2

 
1�

s
1 +

2EtotL2

�k2

!
: (3:36)

By comparing (3:36) with (3:34), the relationship between energy and eccentricity becomes

apparent:

e =

s
1 +

2EtotL2

�k2
: (3:37)

The orbit type depends on Etot in the following manner:

Etot = �
�k

2

2L2 , e = 0, circle,
Etot < 0, 0 < e < 1, ellipse,
Etot = 0, e = 1, parabola,
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Etot > 0, e > 1, hyperbola.

Since the planets are in bound orbits with Etot < 0, to the accuracy of this simple two-
body model the planets are in elliptical orbits with the Sun at one focus, which is Kepler's

1st Law.

3.2.2 Kepler's 3rd Law

Notice from (3:36) that

1

r1
+

1

r2
=

2�k

L2
; (3:38a)

1

r1
�

1

r2
=

�
�k

L2

�2 �
1�

�
1 +

2EtotL
2

�k2

��
= �

2�Etot

L2
: (3:38b)

With (3:38) we can �nd a simple relationship between Etot and and the orbit's semi-major
axis, a, which is one-half the sum of the apsidal distances

a =
r1 + r2

2
=

1

2

�
1

r1
+

1

r2

�
r1r2 = �

�k

L2

L2

2�Etot

= �
k

2Etot

;

or

Etot = �
k

2a
: (3:39)

Notice that Etot depends on a, but does not depend on e or L. Thus for elliptical orbits the
semi-major axis depends only on energy. The area A of an ellipse is �ab = �a2(1� e2)1=2.
Using this fact, together with (3:21), (3:37), and (3:39), it is a homework problem to show
that the period � satis�es

�2 = 4�2a3
�

k
: (3:40)

Now, consider Newton's law of gravitation

F (r) = �
Gm1m2

r2
; �(r) = �

Gm1m2

r
; k = Gm1m2 ; (3:41)

where G is the universal gravitation constant. With k = Gm1m2, (3:40) yields:

�2 = 4�2a3
1

G(m1 +m2)
: (3:42)

Since the mass of the sun is much larger than the mass of any of the planets, to a good
approximation (3:42) says that the square of the period of revolution is proportional to the
cube of the semi-major axis for the planets, which is Kepler's 3rd Law. The magnitude
of the error introduced by neglecting the planetary mass is explored in the homework.

Equation (3:42) allows us to \weigh" the total mass of a distant two-body system, like
Pluto and its satellite Charon, by observing the system's period and semimajor axis. In
passing, we note that an alternate way to write (3.42) is to introduce the average angular

3{8



velocity, which planetary scientists call the mean motion, n � 2�=� , in which case (3.42)
becomes:

n2 =
G(m1 +m2)

a3
: (3:43)

3.3 Kepler's Equation

To �nd the position of a planet in its orbit at a given time, r(t), we need to invert

t(r) as given by (3.23). The factor L2=� in (3.23) can be rewritten for an elliptical orbit
using A = L�=(2�) and (3.42):

L2

�
=

(2��ab)2=�2

�
= 4��2a2a2(1� e2)

G(m1 +m2)

4�2a3
;

= Gm1m2a(1� e2) : (3:44)

Write (3.23) with Etot = �Gm1m2=(2a) from (3.39), �(r) = �Gm1m2=r from (3.41), and

L2=� = Gm1m2 a(1� e2) from (3.44):

t(r) =

Z
r

r0

�
2

�

�
�
Gm1m2

2a
+
Gm1m2

r
�
Gm1m2 a(1� e2)

2r2

��
�1=2

dr ;

=

�
2G(m1 +m2)

�
�1=2 Z r

r0

�
r �

1

2a
r2 �

a(1� e2)

2

�
�1=2

r dr ; (3:45)

where the starting time is taken such that r0 corresponds to periapse (i:e:; minimum r).
One carry-over from medieval astronomy is that angles are called anomalies, for example
�, de�ned such that � = 0 corresponds to periapse, is called the true anomaly. Before
integrating (3.45), it is convenient to introduce a new angle E (not to be confused with
energy) called the eccentric anomaly, which is de�ned by:

r = a(1� e cosE) : (3:46)

Notice that periapse and apoapse correspond to E = 0 and E = �, respectively. By using
(3.46) to replace r in favor of E in (3.45), employing the identity sinE=(1�cos2E)1=2 = 1,
multiplying by n, and using (3.44), the integral takes the simple form:

nt =

Z E

0

(1� e cosE) dE ; (3:47)

which can be evaluated to give:

M � nt = E � e sinE ; (3:48)

were M is called the mean anomaly. Equation (3.48) is a transcendental equation called

Kepler's Equation. Given t in the form of the mean anomaly, we must invert (3.48) to
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obtain E, and then use E in (3.46) to obtain r. The need to invert (3.48) to predict the
locations of planets motivated some of the early work in numerical methods.

3.4 Tides and Resonances

With Newton's laws it is possible to explain tides in terms of the gravitational at-
traction. All planet-moon systems experience tidal interactions, several of which can be

signi�cant in terms of orbital and/or thermal evolution. A simple introduction to the con-
cept of tides comes from consideration of the inverse square law. If a planet and moon are

a distance a apart and the planet on which the tide is being analyzed has a radius R, then
the force on the near side is proportional to 1=(a � R)2, while the force at the center of

the planet is 1=a2 and the force on the farside varies as 1=(a+R)2. The di�erential force
between the nearside and center is

1

(a� R)2
�

1

a2
=

a2 � a2 + 2aR�R2

a2(a2 � 2aR+R2)

or
1

(a� R)2
�

1

a2
=

2R� (R2=a)

a3 � 2a2R+ aR2
:

Because R is usually much less than athe �rst terms in the numerator and denominator
on the RHS are the largest and the others can be ignored to �rst order. So the size of the
tidal buldge varies as 2R=a3. The tide varies with the radius of the planet such that larger
planets have larger tides than smaller planets for the same disturbing potential. And the
tide varies with the cube of the distance of the moon so that a closer moon raises larger
tides. Also note that the moon raises a tide both on the nearside and farside of the planet.

3.4.2 Active Volcanism on Io

In the outer solar system, orbital and rotational mechanics represents a mechanism
for heating of small bodies. As an example of this process we consider the case of Jupiter's
innermost Galilean satellite, Io. Io is the most volcanically active body in the solar system.
This may seem surprising at �rst, because Io is about the size and density of Earth's
Moon, and the Moon hasn't seen intense volcanism since early in its history. Even as the
Voyager 1 spacecraft headed towards its closest approach with the Jovian system it was
still widely expected that Io would not turn out to be all that unusual. In fact, the press
conferences were over and the team scientists were heading home when, on March 8, 1979,
navigation engineer Linda Morabito was examining an image of Io to facilitate a re�nement

of Voyager's trajectory and discovered an active volcanic plume. At �rst, she thought it
might be another moon coming around the limb of Io, but she almost immediately realized
that this was not the case.

We now know that Io is experiencing enormous tidal dissipation because it is locked
in a three-way orbital resonance with its neighbors Europa and Ganymede. All three of
Kepler's laws will be mentioned in the following discussion of the e�ects of tidal dissipation
on satellites.

3.4.3 An Enigmatic Satellite

3{10



Even before Voyager 1 photographed active volcanoes on Io, there were occasional
hints from Earth-based observations that Io was an unusual satellite. The following is a

brief history of pre-Voyager studies of Io (after Nash et al., Satellites, p. 631-635):

1610. Io is discovered by Galileo.

1805. Laplace studies the 4:2:1 resonance that bears his name.

1927. Io has a pronounced variation in brightness with orbital phase angle.

1964. A report of an anomalous brightening of Io's surface as it emerged from
behind Jupiter. Bursts of decametric radio emission from Jupiter are apparently

controlled by Io's orbital position.

1968-69. Models of the electrodynamical and magnetospheric coupling between
Io and Jupiter are published.

1970's. Spectral re
ectance observations are made, mostly looking for evidence
of a Moon-like surface with perhaps some water or ammonia frost.

1971. Io occults a bright star, providing an accurate determination of its radius.

1972. Discordant photometry at visible and infrared wavelengths.

1973. Io is determined to have dark poles and a relatively bright equator. Spectral
evidence for sulfur on Io is discovered, and the expectation of water or ammonia
frost is not upheld. Sodium D line emission is discovered in Io's spectrum. Pioneer
encounters Jupiter and discovers an ionosphere and a thin atmosphere on Io.

1975. Ionized sulfur emission in the inner Jovian magnetosphere. More spectral
evidence for sulfur on Io's surface.

1977. Strong absorption near 4 �m (later identi�ed as SO2) .

1979, before Voyager encounters. Observation of intense temporary brightening
in the infrared from 2�m to 5�m. Interpretation that some of Io's surface is
600 K, compared with a daytime average of 130 K. Skepticism. Prediction of
\...widespread and recurrent volcanism..." based on tidal dissipation and the
Laplace resonance.

1979, Voyager encounters. Absence of impact craters. Intense surface coloration.
Active volcanic plumes. SO2 gas. Surface hotspots.

The following is a brief summary of the paper \Dynamic geophysics of Io," by A.
Mc Ewen, J. Lunine, and M. Carr, in \Time-variable phenomena in the Jovian system,"
NASASP � 494.

Among the observations made by the Voyager spacecraft in 1979 were active volcanoes
up to 300 km high, hot spots more energetic than thousands of Yellowstones, and color and
albedo changes over areas the size of Alaska. Changes in plume activity, surface features,

and thermal emission have been observed on time scales ranging from hours to years.
Io and Earth's Moon have similar sizes and densities. However, the Moon has a global

heat 
ow of about 0.02 Wm�2, Io's heat 
ow is 1 to 3 Wm�2.
Io's bulk composition is probably silicate, but the surface composition has been pro-

foundly altered by volcanic resurfacing and outgassing. SO2 has been positively identi�ed
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as both a surface frost and a gas, with the frost possibly covering as much as 30% of the
surface. The colors are thought to be caused by allotropes of sulfur, but there is some

controversy over this idea.
The presence of 10-km high mountains implies a thicker lithosphere than originally

envisioned by Peale et al.
Io's plumes erupt under conditions of pressure, temperature, and gravity that are very

di�erent from those on Earth. The plumes are probably driven by SO2 and/or sulfur, in
which multiple phase changes can occur, so the plume dynamics and thermodynamics are

unlike terrestrial eruptions.

Nine eruption plumes were observed during the Voyager 1 encounter, and eight of
these were re-observed by Voyager 2 four months later. Many of the plumes were 50-100

km high, but Pele, active during the �rst encounter and having the greatest height (� 300
km), had ceased activity sometime before the second encounter. The plume eruptions can

be grouped into two major classes:

1. Prometheus-type eruptions: smaller (50-120 km high, 200-600 km diameter
surface deposits), long lived (months to years), contain optically thick, dark jets,

deposit bright white materials, erupt at velocities of � 0:5 km s�1, and are con-
centrated at low latitudes in an equatorial band around the satellite.

2. Pele-type eruptions: large (� 300 km high, 1000-1500 km diameter surface
deposits), are optically thin, deposit relatively dark red material, erupt at �
1:0 km s�1, and occur in the region from longitude 240� to 360�.

A variety of ways of estimating the total resurfacing rate yield a range of 10�3 to
10 cmyr�1. The absence of impact craters on the visible surface of Io requires a rate
greater than 0.1 cmyr�1. The energy required to bring internal material to the surface at
this rate is less than 10% of the global average heat loss.

3.4.4 Orbital Resonances

The solar system is full of curious resonances and apparent coincidences between the
orbital elements of its individual constituents. For example, it is quite common to �nd
satellites, like Earth's Moon, that always keep the same face pointed towards their host
planet. An even more synchronized state can hold in which \the day equals the month"
and the satellite and planet rotate like a dumbbell, which is surmised to be the case for
Pluto and Charon. Not all satellites are behaving so simply in the current solar system.
The non-spherical shape of Saturn's satellite Hyperion allows for gravitational torques to

cause it to tumble chaotically.
There are several competing e�ects that control the evolution of satellite orbits. Be-

cause planetary bodies are not point masses but are �nite objects, and because the force of

gravity varies as a function of distance, two mass elements on a satellite that are at di�er-
ent distances away from the planet feel slightly di�erent gravitational attractions towards
the planet. This di�erential force gives rise to tides, and usually to a permanent bulge on
the satellite. Both the planet and its satellite raise tides on the other that are important

over long time periods for the evolution of the pair.
Tides raised on a satellite by its host planet do not change the satellite's orbital

angular momentum, but they do dissipate its orbital energy. Equations (3.39) and (3.41)
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imply that the orbital energy Etot is related to the semi-major axis a by:

Etot = �
Gm1m2

2a
: (3:49)

The thermal energy produced by tidal dissipation is drawn from the orbital energy. This
makes E more negative and corresponds to a decrease in a and a corresponding increase

in the mean motion n.
The rate of change of a satellite's mean motion that results from tidal dissipation has

been found to have the following form:

dn

dt
/

1

a8
e2k

Q
; (3:50)

where the Love number k and the tidal dissipation parameter Q, which is a measure
of the energy dissipated per cycle, take into account the geophysical properties that control

the energy dissipation rate. The dependence of tidal dissipation on eccentricity may be
understood as follows. Consider the common case of a satellite in synchronous rotation
(e.g., Io, Earth's Moon). In the case of a circular orbit, such synchronous rotation implies
that the same side of the satellite always faces the host planet. However, if the satellite's
orbit is eccentric, then by Kepler's 2nd Law the satellite moves faster through the part of its
orbit nearest to the planet, and slower through the part of its orbit away from the planet.
Meanwhile, the rotation rate remains constant throughout the orbit. This means that the
satellite's orientation relative to the planet is not locked, but slips back and forth slightly
with each revolution. This nodding of the satellite about its equilibrium con�guration
causes strains to develop inside the satellite that produce heat and a loss of orbital energy.
There is also a smaller e�ect due to the periodic changing of the tidal strain as the satellite
moves closer to and farther from the planet in its eccentric orbit.

While the generation of heat inside the satellite causes a loss of orbital energy, there
is a negligible torque produced on the satellite, and hence a negligible e�ect on the orbital
angular momentum L. If L is a constant, then (3.44) implies

a /
1

1� e2
= 1 + e2 + e4 + : : : (3:51)

Thus, a decrease in a implies a decrease in e, and orbits tend to become more circular with
time for processes that conserve orbital angular momentum and dissipate orbital energy.
In the absence of other e�ects, tidal heating would tend to stop the evolution, because as
e reduces to zero, (3:50) implies that dn=dt reduces to zero.

There are competing e�ects that can frustrate this tendency. A satellite raises a tidal
bulge on its host planet that is not necessarily directly underneath the satellite. Io raises
a tide on Jupiter that always leads Io in its orbit because Jupiter rotates faster than Io
orbits. Unlike the previous e�ect that is due to tides on the satellite, this e�ect is due

to tides on the planet, and it does change the satellite's orbital angular momentum. In
this most common case where the planet rotates faster than the satellite orbits, some
of the planet's spin angular momentum is transferred to the satellite's orbital angular
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momentum. The torque on the satellite from the planetary bulge pulls the satellite forward,
adding orbital energy and causing the orbit to expand, in competition with the previous

e�ect. Another important e�ect is the action of orbital resonances between satellites. An
important resonance exists between Io, Europa, and Ganymede that continuously pumps

up the eccentricity of Io and prevents it from damping to zero.

3.4.5 Laplace 4:2:1 Resonance

The mean-motion resonance between the orbits of Io, Europa, and Ganymede was

�rst carefully studied by Laplace (Mecanique Celeste, vol 4, 1805) and is called the Laplace
resonance. The physical characteristics of the Galilean satellites are shown in Table 3.1.

Table 3.1

Io Europa Ganymede

n (�/day) 203:4890 101:3747 50:3176

eforced (2 : 1) 0:0041 0:0101 0:0006

efree 0:00001 0:0009 0:0015

Adapted from Yoder (1979).

Let the subscripts 1, 2, and 3 refer to Io, Europa, and Ganymede, respectively. Then

n1 � 2n2 = (203:4890)� (202:3494) = 0:7396 ;

n2 � 2n3 = (101:3747)� (100:6352) = 0:7395 ;

n1 � 3n2 + 2n3 � 0 : (3:52)

Without the forcing caused by this three-way mean-motion resonance, Io would have an
eccentricity of only e1 = 0:00001, which would produce negligible tidal heating. Orbital

resonances tend to amplify perturbations and to increase eccentricities. The combined
e�ect of the complete 4:2:1 resonance results in e1 = 0:0043. This would normally still
be a small value, but not for Io because of the strong tides it experiences because of its
close proximity to Jupiter. In the 2 March 79 issue of Nature, Peale, Cassen, and Reynolds
published a paper entitled \Melting of Io by Tidal Dissipation." In this paper, which
came out just days before the Voyager 1 encounter of Jupiter on 5 March 79, the authors

predicted:

The implications of the orbital resonances of the inner three Galilean satellites
are profound for the thermal state of Io. These calculations suggest that Io

might currently be the most intensely heated terrestrial-type body in the solar
system. The surface of the type of body postulated here has not yet been directly
observed, and although the morphology of such a surface cannot be predicted in
any detail, one might speculate that widespread and recurrent surface volcanism
would occur, leading to extensive di�erentiation and outgassing.

Voyager 1 did indeed �nd widespread volcanism on Io | so much volcanism that the images

show no evidence of impact craters, implying a fast resurfacing rate. The prediction and
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swift con�rmation of Io's volcanism is one of the success stories in theoretical planetary
science.

A picture has emerged that explains how the 4:2:1 resonance of the Galilean satellites
may have come about. The paper \How tidal heating in Io drives the galilean orbital

resonance locks" by C. Yoder (1979) was the �rst to convincingly explain the situation,
which we summarize below:

1. Suppose that Io were formed well inside the orbit of Europa about 4:6 � 109

years ago. Any initial free (unforced) eccentricity in Io's orbit would be quickly
damped out by the tide Jupiter raises on Io. Only modest tidal heating of Io

occurs.

2. Io's orbit would then expand because of the e�ects of the leading tide it raises

on Jupiter. No signi�cant tidal heating yet.

3. Europa's orbit would also expand, but because of Io's greater mass and smaller
semi-major axis, Io would spiral out faster.

4. Io would eventually approach the 2:1 commensurability with Europa.

5. Io's forced eccentricity increases until it reaches the critical value � 0:0026.
Europa's limiting eccentricity is � 0:0014. The signi�cance of reaching these
numbers is that thereafter a resonant interaction causes Europa's orbit to expand
at exactly half of Io's orbit.

6. This stable state is maintained until Europa encounters the 2:1 commensura-
bility with Ganymede. Instead of dissipation in Europa repelling Ganymede, it
is found that Io must work even harder using a three-body resonance to transfer
angular momentum from Europa to Ganymede's orbit.

7. The vanishing of the di�erence frequency describes the presently observed
three-body resonance.

Current research continues to re�ne and challenge this picture, and the �nal story has
undoubtably not yet been told. Whatever the cause of the 4:2:1 resonance, its e�ects on
Io are profound, and make it one of the most bizarre and interesting satellites in the solar
system.

3.5 Chaotic Orbits

We have seen how the 4:2:1 commensurability in the mean motions n = 2�=� between

Jupiter's three innermost Galilean satellites, the so-called Laplace resonance, continuously
forces Io's eccentricity to be higher than it otherwise would be, ultimately causing enough
tidal dissipation to give rise to active volcanism. Mean-motion resonances also play a
dominant role in the physics of the asteroid belt, where chaotic dynamics, rather than

tidal heating, is the primary agent of change.

3.5.1 Structure in the Asteroid Belt

The distribution of orbital elements is not random in the asteroid belt. There are

families of asteroids that share similar a-e-i elements. There are also conspicuous gaps and
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clumps of asteroids at certain semi-major axes from the Sun. In 1867, Daniel Kirkwood
�rst noted that large gaps in the asteroid belt are associated with mean-motion commen-

surabilities with Jupiter. The two largest of these Kirkwood gaps fall on the 3:1 and
2:1 commensurabilities. Conversely, at the 3:2 commensurability there is a clumping of

asteroids, called the Hilda asteroids. There is also a clumping of asteroids, the Trojan
asteroids, that travel in the 1:1 commensurability 60� ahead and 60� behind Jupiter in its

orbit. The Trojan asteroids are understood to be caught in the stable (L4, L5) Lagrange
points in Jupiter's orbit, but what is the explanation for the Kirkwood gaps and for the

Hilda asteroids?

If there had been only gaps at the commensurabilities, then the simple explanation

might be Kirkwood's original suggestion that the gaps are the result of asteroids being
pulled out of the resonance zones by the periodic tugs from Jupiter. We now know that

this picture is too naive. We showed previously that the 2-body central force problem has a
formal solution based on the two integrals of motion, energy Etot and angular momentum

L. However, the fact that the 3-body problem does not have such a formal solution provides

the �rst hint that the dynamics of the solar system as a whole is likely to be much richer
than is encompassed by Kepler's laws.

In 1892, Poincar�e made two important discoveries about the nature of solar system
dynamics. First, he found that the assumption of regularity of the motion implies the
existence of a complete set of independent integrals of motion. However, he showed that
these integrals of motion generally do not persist when there are perturbations, such as
the gravitational perturbations that each planet makes on the others. Consequently, most
conservative systems do not possess all the integrals of motion necessary for a complete
solution. Poincar�e also discovered that the motions near unstable periodic orbits possess
almost unimaginable complexity. This was an early indication of the nature of chaotic
orbits.

Poincar�e's discoveries were not fully appreciated at �rst. Fermi (1923) tried to prove,
on the basis of Poincar�e's proof of the nonexistence of analytical integrals, that conservative
(Hamiltonian) systems were generally ergodic, meaning that the planets will eventually
pass through every point inside the space that is constrained by the conservation of energy
and angular momentum. The regularity of the known planetary orbits seems to argue
against this idea, however, and Fermi was shown to be incorrect. The truth lies somewhere
between Kepler's elliptical orbits and Fermi's ergodic orbits.

3.5.2 KAM Theory

A theorem outlined by Kolmogorov in 1954 and proven independently by both Arnol'd
and Moser in 1961, now called the KAM theorem, states that if the perturbations are su�-

ciently small and smooth, integrable motion remains in large measure quasi-periodic. The
value of the proof of this theorem is not that it provides any practical method for han-

dling real perturbations | the KAM theorem only handles extremely small perturbations
of relative magnitude less than about 10�48 | but rather, as a proof by construction it

demonstrates that quasi-periodic motions can indeed persist under perturbations. Arnol'd
(1961) extended the proof to show that for solar systems with planetary masses, eccentric-
ities, and inclinations su�ciently small, motions remain in large measure quasi-periodic.
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As it happens, our solar system falls outside the range of validity of Arnold's extension to
the KAM theorem, and this opens up the possibility that nonperiodic orbits might exist.

Because of the analytical intractability of nonlinear systems, modern work in solar
system dynamics relies on numerical experiments. The di�culty is that the solar system

has a wide range of timescales, from the planetary revolutions that are measured in years,
to the large orbital changes that result from the cumulative e�ect of thousands or millions

of years of perturbations. To avoid numerical instability, a computer must take small
enough timesteps to resolve the highest-frequency components in a system, but often the

lowest-frequency components are the most interesting. For example, the well-understood

Keplerian component of a planet's orbit has a frequency that is around 1,000 times higher
than the slow changes that result from the gravitational perturbations of the other planets.

3.5.3 Early Studies of Chaotic Systems

Two early numerical experiments that proved to be seminal to our understanding of
nonlinear dynamics were the simpli�ed weather model of Lorenz (1963), which has become

the classic example of a dissipative chaotic system, and the nonlinearly coupled harmonic
oscillator problem of H�enon and Heiles (1964), which has become the textbook example of
a conservative chaotic system. Both models show clearly that complicated behavior can
result from simple nonlinear equations of motion.

In order to aid in the analysis of nonlinear dynamical systems, objective tools have
been developed to help with the characterization of chaos. It is observed that two nearby
chaotic trajectories will diverge exponentially with time. This property of sensitive depen-
dence on initial conditions is quanti�ed by the Lyapunov exponent. A second important
tool that is useful for simple problems is to plot the intersection of an orbit with some plane
in its phase space, like using stroboscopic photography. Such a plot is called a surface
of section. The di�erence between a quasi-periodic, or regular, orbit and a chaotic orbit
in a surface of section is immediately obvious to the eye. As each new point intersects
the surface of section, a regular orbit �lls out a smooth curve, even though the points do
not collect next to each other from one orbit to the next, whereas a chaotic orbit forms a
jumble of dots.

A new intuition has emerged from the study of chaotic systems. One expects that a
dynamical system with more than one degree of freedom will nearly always give rise to
chaotic behavior for some initial conditions, and regular behavior for others, with the two
occurring side by side in phase space. One also expects that resonances will nearly always
be associated with chaotic zones. This turns out to be the case for the solar system's

Kirkwood gaps.
For a complete summary of chaotic dynamics applied other problems in solar system

dynamics, like the tumbling of Saturn's satellite Hyperion, see the review paper by Wisdom
(1987).

3.5.4 Chaos and the Kirkwood Gaps

If we wish to understand the Kirkwood gaps, we �rst need to explore the extent of the
chaotic region around each commensurability between Jupiter and the asteroid belt. It is

di�cult to predict analytically the extent of a chaotic region. As noted above, numerical
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experiments can also be prohibitively time-consuming. The �rst numerical time integra-
tions of the solar system used approximate equations that were averaged to remove the

rapidly varying orbital terms while leaving intact the resonant and long-period, or secular,
terms. Small regions in phase space of chaotic orbits were found in these experiments, but

the basic conclusion was that chaotic behavior was not that important. This conclusion
was based on numerical integrations that were run for only 10,000 years.

H�enon and Heiles noted in their original paper that an important feature of a surface
of section generated by a Hamiltonian system is that it is area preserving. That is, each

time a small chord of trajectories intersects the surface of section, the area encompassed by
that chord remains a constant. H�enon and Heiles suggested that signi�cant progress might

be made by studying an iterated area-preserving map of the section onto itself. In fact,
much of what is known about general Hamiltonian systems has come from the study of the

properties of area-preserving maps, without making reference to the underlying di�erential
equations. In practical applications this mapping approach is limited because the explicit

form of the map for a given dynamical problem is not usually known. If the map can be

found it often leads to a thousand-fold increase in computational speed.

In 1979, B.V. Chirikov introduced a method for approximating the area-preserving
maps of certain problems. In 1982, J. Wisdom applied Chirikov's idea to the problem of
asteroid orbits near the 3:1 commensurability. As with previous methods, the strategy was
�rst to remove the high frequency terms associated with orbital periods while retaining
the resonant and secular terms. Then, new high-frequency terms made up of simple delta
functions were added back into the system to mimic the original terms. The new equations
are integrated across and between the delta functions, yielding the sought-after map of the
phase space onto itself. Numerical experiments that use the map can be integrated over
time periods that are a thousand times longer than was previously possible. The price
paid is that the new equations are not identical to the old equations, but one hopes that
the topology of the new phase space accurately re
ects that of the original problem.

3.5.5 Changes in Eccentricity

When Wisdom �rst applied the fast-mapping technique to the simpli�ed 2-dimensional
elliptic problem, he found that an asteroid can spend a 100,000 years or longer in a low
eccentricity orbit and then suddenly take large excursions into an highly eccentric orbit.
This unexpected result was �rst suspected to be an artifact of the approximate method,

but subsequent numerical integrations of the complete di�erential equations veri�ed that
the behavior is real. In some runs the eccentricity jumps all tend to reach the same
eccentricity, but occur at irregular intervals. The more typical behavior shows bursts of

irregular high-eccentricity behavior interspersed with intervals of irregular, low-eccentricity
behavior, with an occasional eccentricity spike.

In the surfaces of section plotted in Figs. 9-12 of Wisdom (1987), the eccentricity is

just the radial distance from the origin. Examination of these �gures makes the origin of
the strange intermittent behavior of the eccentricity clear. There exists a chaotic zone that

surrounds the origin e = 0, and this chaotic zone has a very narrow branch that extends to
eccentricities near 0:3. A trajectory wanders in the chaotic zone and every now and then

it enters the narrow bridge to large eccentricity. As expected there are unstable periodic
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orbits that stand at the gateways ushering the trajectories one way or the other. The
remarkable similarity of the eccentricity jumps is explained by the narrowness of that part

of the chaotic region that extends to high eccentricity. The eccentricity varies irregularly
because the chaotic zone is large.

To perform a million-year reversible integration in the face of exponential divergence of

neighboring points, one would need to carry 200 digits of accuracy on the computer, which
is di�cult even with today's supercomputers. Therefore, only the qualitative results of a

long time integration can be trusted. The large eccentricity jumps discovered by the fast-
mapping approximate techniques have now been repeatedly reproduced in conventional

numerical integrations. In addition, the surfaces of section for the problem are consistent
with the character of the eccentricity jumps, and a semi-analytical treatment has been

found that even reproduces the shape of the chaotic zone. Next we shall see how these

eccentricity jumps can explain the 3:1 Kirkwood gap.

3.5.6 Eccentricity and the 3:1 Kirkwood Gap

For an asteroid orbiting near the 3:1 commensurability at a = 2:5AU, any eccentricity
e above 0:3 will put the asteroid in a Mars-crossing orbit. It turns out that all of the
3:1 chaotic trajectories cross the orbit of Mars. This is also true of the quasi-periodic
librators. Therefore, asteroids near the 3:1 commensurability can be e�ciently removed
from the asteroid belt by collisions or close encounters with Mars. Comparison of the
outer boundary of the chaotic zone with the actual distribution of observed asteroids
shows remarkably good agreement (see Wisdom, 1987, Fig. 13).

The e�ciency of this asteroid-removal mechanism depends on how long an asteroid
remains in a chaotic orbit before it is removed by Mars. It is estimated that Mars alone
could have cleared the 3:1 Kirkwood gap in the age of the solar system. An element of this
calculation is the average time spent by the asteroid as a Mars crosser, which unfortunately
is just the type of question that is dangerous to ask of the numerical experiments.

Asteroids with eccentricities above 0:6 in the 3:1 chaotic zone are of practical impor-
tance because they are in Earth-crossing orbits. In order to establish whether or not this
is an important source of meteorites, several 500,000 year numerical integrations of the
complete equations of motion were carried out. The �rst four integrations attempted were
encouraging, but failed to produce an Earth-crossing asteroid. The �fth attempt �nally
did reveal an asteroidal trajectory that reached Earth-crossing eccentricities. Subsequent
calculations have con�rmed that this mechanism can partially account for the population
of Earth-crossing asteroids.

One of the biggest puzzles in the study of meteorites and asteroids has been that
the most common meteorite type, the ordinary chondrite, which represents 80% of all
meteorites, was not associated with any known counterpart in the asteroid belt. However,

in 1993, R. Binzel and coworkers discovered that 3628 Bo�zn�emcov�a, a 7 km asteroid that
orbits just beyond the outer edge of the 3:1 Kirkwood gap, has a visible and near-infrared

re
ectance spectrum that is similar to L6 and LL6 ordinary chondrites. It is not clear why
more such asteroids have not yet been identi�ed.

3.5.7 The 2:1 Kirkwood Gap and the Hilda Asteroids
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The 2:1 Kirkwood gap and the 3:2 Hilda asteroids are two features of the main asteroid
belt that still need to be explained. Also needing explanation is the sharp decline in the

number of asteroids beyond the 2:1 resonance. The most obvious explanation for the
latter is that asteroids beyond the 2:1 region are so close to Jupiter that their orbits are

dynamically unstable, but this idea has not held up to close scrutiny. In fact, current
numerical experiments do not indicate that the region between 2:1 and 3:2 is particularly

unstable or chaotic. Longer and more realistic future calculations may alter this view.
The instability of the region beyond the 3:2 resonance may be understood in terms of the

resonance overlap criterion. The 2:1 Kirkwood gap is near the outer boundary of the main

belt, but it is not clear whether there is a causal relationship. To answer these questions
we must explore the dynamics of the 2:1 and 3:2 resonances. These turn out to be more

complicated than the 3:1 resonance. The 3:1 resonance is relatively simple because it is
far from the other resonances, and because the higher-order perturbation terms are not as

important. Chaotic behavior for the 2:1 and 3:2 resonances begins to appear only after the
second-order perturbation terms are included, which makes these resonances more di�cult

to study in detail.

3.5.8 Near-Earth Asteroids

There are three classes of near-Earth asteroids (NEA's). Asteroids with orbits that
cross Earth's orbit are called Apollo asteroids. Surprisingly, over half a dozen of the low
inclination Apollo asteroids require less rocket fuel for a return mission than is required
for the Moon. Those asteroids with orbits that cross Mars' orbit but not Earth's orbit are
called Amors, and those that remain inside of Earth's orbit are called Atens. The total
number of observed near-Earth asteroids is now over 200. Shoemaker et al. [1979] have
estimated that the actual populations include about 100 Atens, 700 � 300 Apollos, and
1000-2000 Amors.

The lifetime of a near-Earth asteroid is only about 107-108 years because of the high
probability that it will encounter Earth or Mars. In comparison, most main-belt asteroids
can remain in stable orbits for the age of the solar system. This means that there must
be a continual resupply of near-Earth asteroids. There appears to be a diversity of types,
which indicates that there is more than one source region.

3.5.9 The Stability of the Solar System

The stability of the planetary orbits themselves is one of the oldest problems in celestial
mechanics. The motions of the giant planets appear to be regular in a 210-million year
integration, although a bit more complicated than one might have expected. On the other
hand, Pluto has an orbit that is extraordinarily complicated. Besides the well-understood

mean-motion resonance that prevents the close approach of Pluto and Neptune even though
their orbits overlap, Pluto is known to participate in at least two other resonances: its
argument of perihelion librates about 90�, and the frequency of the circulation of its
ascending node is nearly commensurate with one of the fundamental frequencies in the

motion of the giant planets. The latter resonance gives rise to strong variations in the
eccentricity with a 137-million year period. In 1988 Sussman and Wisdom showed that
Pluto's orbit is chaotic. In 1989, J. Laskar went further and showed that all nine planetary
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orbits are chaotic. He used an approximate technique, but in 1993 G. Sussman and J.
Wisdom con�rmed this result with a series of 100-million-year full calculations of the solar

system.
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Problems

3-1. Kepler's 3rd Law.

a) Verify (3:40).

b) What is the error in the period for Jupiter with the planetary mass set to zero?

What about for Earth?

c) Pluto's mass remained unknown until 1979, when its satellite Charon was discov-
ered. Charon orbits Pluto every 6.387 days at a distance of 1:96�107m. What is the total

mass of the Pluto-Charon system? How does this compare with the mass of the Moon?
With the mass of Neptune's satellite Triton?

d) Using mutual occultations between Pluto and Charon, their radii have been found

to be 1151 and 593 km, respectively. What is the mean density of Pluto plus Charon? Is
this what you would expect?

3-2. Motion near a Potential Minimum.

Assume that the e�ective potential �e(r) for the two-body central force problem,

�e(r) �
L2

2�r2
+ �(r) ; (3:53)

has a local minimum for the circular orbit r = r0.
a) Treat �e(r) as an arbitrary function of r and approximate it with a Taylor-series

expansion about r0. Then, apply dE=dt = 0 to (3:17) to show that for E slightly larger
than �e(r0), r will execute approximately harmonic oscillations about r0 with frequency
! satisfying:

!2 =
1

�

�
d2�e
dr2

(r0)

�
: (3:54)

b) Apply (3.54) to the case of Newton's law of gravitation, and compare with Kepler's
3rd Law.

3-3. Kepler's Equation and Kepler's 1st and 2nd Laws.

a) On a piece of graph paper, plot an ellipse with a = 8 cm and e = 0:8 using the
polar formula:

r =
a(1� e2)

1 + e cos�
: (3:55)

b) Make a table with column headings: M , E, and r. Under the M column enter
0�, 30�, 60�, 90�, 120�, 150�, and 180�, and the corresponding angles in radians. For each
M in radians use whatever means are at your disposal to determine the E that satis�es
Kepler's Equation (3.48), then use (3.46) to determine r.

c) Draw a line from the focus at the origin to the ellipse that is the length of each
r entry. Estimate the area of each section thus produced. How do your results compare
with Kepler's 2nd Law?
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3-4. Fun with chaos. Chaotic dynamics plays a major role in the explanation of such
phenomena as the Kirkwood gaps in the asteroid belt. In 1976, R.M. May wrote a review

article \Simple mathematical models with very complicated dynamics," Nature 261 459{
67, in which he showed that even the simplest possible nonlinear iterative process:

xn+1 = 4a xn(1� xn); 0 < a � 1; 0 � x � 1 ; (3:56)

has complicated, chaotic behavior. Pick a small value for a, and plot the parabola f(x) =

4ax(1� x) and the unit-slope line f(x) = x on the unit square, that is, for x and f(x) 2

[0; 1]. To iterate, start at some initial x0, draw a vertical line upwards to the parabola,
then draw a horizontal line over to the unit-slope line, then back to the parabola, then

back to the unit-slope line, etc. This is a graphical way to keep feeding the new x back into
(3.56), and is a nice way to illustrate the transition to chaos. Now, try this again with a

larger a. Explore the parameter a until you discover values where the iteration settles into
a two-cycle, that is, where it repeats after two iterations. Increase a until the iterations

never settle; this is the chaotic behavior. In between these two states you should be able
to �nd a's that lead to a four-cycle, an eight-cycle, and beyond. When you �nd an a large

enough for chaotic behavior, start two trajectories very close to each other, and watch how
quickly they diverge. After you have made a few sketches, it is acceptable to continue with
a computer.

3-5. Tides and the Roche limit. Consider two small identical spheres of uniform
density �m and radius �r. The spheres are just touching each other, and are at a distance
d from a large planet with density �M and radius R. By equating the gravitational force of
attraction between the touching spheres and the di�erential gravitational force (the tidal
force) of the planet on the spheres, show that the spheres will be pulled apart by the
planet's tidal forces if they venture closer to the planet than:

d � 2:5

�
�M

�m

�1=3

R : (3:57)

This is a good estimate of the planet'sRoche limit. More accurate assumptions about the
properties of the small masses only result in small changes to the coe�cient of (3.57). Use
(3.57) to estimate the Roche limit for Saturn, and compare with the positions of Saturn's

rings and satellites.

References

Belton, M.J.S., R.A. West, & J. Rahe, 1989, Time-variable phenomena in the Jovian

System, NASA SP-494.

Binzel, R.P., T. Gehrels & M.S. Matthews, 1989, Asteroids II, University of Arizona Press.

Burns, J.A. & M.S. Matthews, 1986, Satellites, University of Arizona Press.

Goldstein, H., 1980, Classical mechanics, 3rd ed., Addison-Wesley.

3{23



Peale, S.J., P. Cassen, and R.T. Reynolds, 1979, Melting of Io by tidal dissipation, Science
203, 892{894.

Symon, K., 1971, Mechanics, 3rd ed., Addison-Wesley.

Wisdom, J., 1987, Chaotic dynamics in the solar system, Icarus 72, 241{275.

Yoder, C.F., 1979, How tidal heating in Io drives the galilean orbital resonance locks,

Nature 279, 767{770.

3{24


