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ABSTRACT

The corrugated form of the Harcuvar, South
Mountains, and Catalina metamorphic core
complexes in Arizona reflects the shape of the
middle Tertiary extensional detachment fault
that projects over each complex. Corrugation
axes are approximately parallel to the fault-
displacement direction and to the footwall my-
lonitic lineation. The core complexes are locally
incised by enigmatic, linear drainages that par-
allel corrugation axes and the inferred exten-
sion direction and are especially conspicuous
on the crests of antiformal corrugations. These
drainages have been attributed to erosional in-
cision on a freshly denuded, planar, inclined
fault ramp followed by folding that elevated

talline footwall rocks that were probably not
folded under low-temperature, surface condi-
tions. An alternative hypothesis, that drainages
were localized by small fault grooves as foot-
walls were uncovered, is not supported by
analysis of a down-plunge fault projection for
the southern Rincon Mountains that shows a
linear drainage aligned with the crest of a small
antiformal groove on the detachment fault,

core complexes of Arizona and southeastern
California (Fig. 1) and the corrugated form of
the footwall block is clearly revealed by resis-
tant crystalline rocks that have been stripped of
fault-related breccias (Pain, 1985). Arid climatic
conditions have helped preserve corrugations,
which were first uncovered in early to middle
Miocene time (Spencer and Reynolds, 1989b;
Dickinson, 1991; Fitzgerald et al., 1994; Miller

but this process could have been effective and John, 1999). Corrugation amplitudes are
elsewhere. Lineation-parallel drainages now generally measured in hundreds of meters to
plunge gently southwestward on the southwest kilometers and wavelengths in kilometers to
ends of antiformal corrugations in the South tens of kilometers. None of the numerous theo-
and Buckskin Mountains, but these drainages ries for the origin of the corrugations, as folds

must have originally plunged northeastward if
they formed by either of the two alternative

(Frost, 1981; Spencer, 1982;Yin, 1991), as orig-
inal grooves (Spencer, 1985; John, 1987; Davis

processes proposed here. Footwall exhumation and Lister, 1988), or as a combination of origi-

and preserved some drainages on the crests ofand incision by northeast-flowing streams was

rising antiforms. According to this hypothesis,
corrugations were produced by folding after
subaerial exposure of detachment-fault foot-
walls. An alternative hypothesis, proposed here,

is as follows. In a setting where preexisting terns, extension tectonics, geomorphology,

drainages cross an active normal fault, each
fault-slip event will cut each drainage into two

apparently followed by core-complex arching
and drainage reversal.

Keywords: detachment faults, drainage pat-

metamorphic core complexes, normal faults.

segments separated by a freshly denuded fault INTRODUCTION

ramp. The upper and lower drainage segments
will remain hydraulically linked after each
fault-slip event if the drainage in the hanging-
wall block is incised, even if the stream is on the
flank of an antiformal corrugation and there is
a large component of strike-slip fault move-
ment. Maintenance of hydraulic linkage dur-
ing sequential fault-slip events will guide the
lengthening stream down the fault ramp as the
ramp is uncovered, and stream incision will
form a progressively lengthening, extension-
parallel, linear drainage segment. This mecha-
nism for linear drainage genesis is compatible
with corrugations as original irregularities of
the detachment fault, and does not require fold-
ing after early to middle Miocene footwall ex-
humation. This is desirable because many
drainages are incised into nonmylonitic crys-
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Cordilleran metamorphic core complexes €
mountain-sized masses of rock that have bt
uplifted from mid-crustal depths by ascent b
neath large-displacement, gently to moderat:
dipping normal faults known as detachme
faults. These faults place shallow-level crus
rocks, often including synextensional sedime
tary and volcanic rocks, on exhumed footwe
rocks that are commonly mylonitic (e.g., Dav
and Lister, 1988). Mylonitization has been &
tributed to crystal-plastic shearing downd
from one or more detachment faults, with m
lonitic lineations recording the direction of di
vergence between semirigid crustal bloc
(Wernicke, 1981; Davis, 1983; Davis et al
1986), or shearing between strong upper cr
and flowing plastic deep crust (Wernicke, 199

Hanging-wall rocks typically have been re-

nal and molded grooves (Spencer and Reynolds,
1991; Spencer, 1999), has received wide accep-
tance (e.g., Livaccari et al., 1995). Because of
parallelism between corrugation axes and ex-
tension direction, however, all these theories re-
late corrugation genesis to extension.
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Figure 1. Location map for metamorphic

moved from atop the footwall in metamorphiccore complexes (black) in Arizona.
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have been tilted so that drainage direction was re-
versed due to lateral migration of the locus of
core-complex arching. Drainage reversal by this
mechanism supports the concept of a rolling
hinge or migrating monoclinal flexure in the
wake of core complex exhumation (Wernicke
and Axen, 1988; Buck, 1988; Hamilton, 1988),
but requires enough uplift of the monocline to
produce an asymmetric antiform (e.g., Howard
etal., 1982; Spencer, 1984).

contour interval 200 feet (61 m) o

mi.
I:l Quaternary alluvium
N Bedrock with contours

ARIZONA'S METAMORPHIC CORE
COMPLEXES

South Mountains Metamorphic Core
Complex

The South Mountains metamorphic core com-
plex south of Phoenix, Arizona, is elongate in an
east-northeast direction and has a grooved or
fluted morphology parallel to the long axis of the
range (Fig. 2). The eastern half of the range con-
sists of early Miocene granite and granodiorite,
Phereas the western half consists of Early Prot-
erozoic granite and gneiss (Reynolds, 1985;
Reynolds et al., 1986). The eastern half of the

Many metamorphic core complexes in the arigtrong and cold. Core complex rocks, typicallyange is overprinted by a gently dipping my-
southwestern United States are incised by draigranitoids and quartzofeldspathic gneisses, wouldnitic foliation that approximately mimics the
ages that parallel corrugation axes and mylonitigkely exhibit other manifestations of horizontalgently east-plunging antiformal morphology of
lineation. These drainages were first recognized lshortening, especially reverse faults, if folded urthe range. Mylonitic lineation parallels the an-
Pain (1985), who attributed them to stream erosiater such conditions. No such manifestationgiform axis and asymmetric petrofabrics indicate
on planar fault ramps that dipped in the extensidmwever, have been identified. Furthermore, mosbp-to-the-east shearing during mylonitization
direction, followed by folding with fold axes par- antiformal corrugations are mylonitic only at ongReynolds and Lister, 1990). Rocks in the west-
allel to extension direction and to drainages. Thisnd. The other, nonmylonitic end of each antifornern third of the range are nonmylonitic. Abundant
interpretation is supported by evidence that linwas too cool at the time of detachment faulting toorth-northwest—striking Miocene dikes in the
eation-parallel drainages have been locally capndergo mylonitization and so was part of theentral part of the range strike perpendicular to
tured by the more numerous and possibly youngstrong upper crust even before detachment fauttzylonitic lineation. Some dikes were intruded
drainages that run down the flanks of the corrugég began. Paleomagnetic data from the Soutturing mylonitization and were affected by the
tions (Pain, 1985). Furthermore, the arid climate iMountains near Phoenix, Arizona, reveal no eviplastic deformation, but most are younger. Chlo-
the Mojave-Sonoran desert region and the hightyence of folding and indicate that, if the corrugaritic alteration and associated brecciation are
resistant character of the mylonitic rocks that hosibn that defines the basic form of the range is azbommon at high structural levels in the eastern
many of the drainages add plausibility to the inferantiformal fold, then folding occurred under high-half of the range. A small klippe overlies a de-
ence that drainage patterns have been presentethperature conditions before acquisition of remtachment fault on the southeast flank of the range
since establishment 12—-20 Ma. anant magnetization (Livaccari et al., 1995).  (Reynolds, 1985). Mylonitization occurred be-

Pain’s (1985) envisioned process of corruga- In this article | first outline the distribution and tween 24 and 19 Ma (Reynolds et al., 1986). The
tion-parallel drainage incision requires faultgeometry of corrugation-parallel drainages in theomplex cooled through the apatite fission-track
ramps to have dipped consistently in the extensi@outh Mountains, Catalina, and Harcuvar metannealing temperature (~110 °C) at 17-18 Ma
direction. However, exposed metamorphic coreorphic core complexes in Arizona. Two alter{Fitzgerald et al., 1994) and was probably uncov-
complexes include lateral ramps and lateral termiative hypothesis for the origin of corrugation-ered immediately after this time.
nations with detachment-fault dips that are nqgtarallel drainages are then presented that, unlikeln general, the South Mountains are a single
consistently in the extension direction and, ifPain’s hypothesis, are consistent with exhumantiformal ridge surrounded by late Cenozoic
some cases, are nearly perpendicular to it. Afion of the corrugations as previously formed feabasin sediments. The basic form of the range is in-
across the south face of the Santa Catalina Mounwes that emerged from beneath corrugated desred to reflect the form of an upward-bounding
tains north of Tucson, Arizona, for example, mytachment faults. Analysis of a down-plungedetachment fault, which in turn is inferred from
lonitic lineation is highly oblique to the rangecross-section view of the detachment fault in thihe distribution of carapace-forming, footwall
front and to the dip of the detachment fault at thRincon Mountains east of Tucson suggests thatylonitic fabric and chloritic breccia, and one
foot of the range. Pain’s model also requires thaine proposed mechanism for drainage incisiosmall klippe, all in the eastern half of the range
folding to produce corrugations must affect footwas not effective. An implication of either of the(Reynolds, 1985). This single antiformal ridge is
wall rocks after subaerial exposure and drainaggoposed alternative drainage-incision mechapproximately the same size as antiformal corru-
incision, at which point footwall rocks are fairly nisms is that some extension-parallel drainagegtions in other metamorphic core complexes in

) 112°00'W
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Figure 2. Topography and drainages of the South Mountains, central Arizona. Note small
klippe in southeastern part of range. Paired arrows at opposite ends of range are aligned with
linear topographic features, as follows: points A, A A", and A" are along aligned ridge-crest
segments. Parallel line segments to north of aligned ridges connect aligned drainages (geolo
from Reynolds, 1985).

728 Geological Society of America Bulletin, May 2000



EXTENSION-PARALLEL DRAINAGES IN ARIZONA'S METAMORPHIC CORE COMPLEXES

Arizona and presumably has the same origin. ldrainage pattern that is biased toward the flankeeasured by protractor from the map of Drewes,
detail, the range is characterized by numerows the antiform. The four histogram troughsl977). In the lower part of the canyon and farther
linear ridge crests, ridge flanks, isolated ridgeshown in Figure 3A, separating the four peaksjown the nose of the plunging arch, the sharp
canyons, and drainages that parallel the trend m#present excluded drainage directions that arielge crest and canyon both trend 236°, slightly
the large antiform axis. Two linear features arenconsistent with a doubly plunging antiformaldiscordant to the 250° trend of mylonitic lineation
especially long and straight: The upper reaches fufld model. (Drewes, 1977; Davis, 1980; Fig. 4A in Davis).
four small drainages are aligned along an 061°

trend that is parallel to a nearby alignment of aatalina Metamorphic Core Complex

least four ridge segments (Fig. 2). The relation-

ship of the smaller linear features to the form of The Catalina metamorphic core complex
the fault is not known. Mylonitic lineation in the near Tucson in southeastern Arizona consist:
South Mountains trends 060° (average of 33®om southeast to northwest, of the Rincon

A « South Mountains

measurements from Reynolds, 1985), parallel tBanta Catalina, Tortolita, and Picacho Moun- g NEEND  SEFLANK ~ SWEND  NW FLANK
the trend of the antiform that defines the basi@ins (Figs. 1 and 4). The ranges are compose 25 5_1

morphology of the range as well as to the numeof a great variety of nonmylonitic rock types on g

ous smaller linear features (Fig. 2). The strontheir northeast flanks and primarily of mylonitic 20 4 £

parallelism of the many elongate geomorphigranitic and gneissic rocks on their southwes H

features, all parallel to mylonitic lineation, cannoflanks (Drewes, 1974, 1977; Keith et al., 1980; 15
have been produced by preferential erosion aloigavis, 1980; Banks, 1980; Dickinson, 1991;
structural or lithological weaknesses associatdebrce, 1997). Mylonitic fabrics overprint Ter-
with mylonitic lineation because the westerrtiary to Proterozoic granitoids and gneissic
third of the range is not mylonitic, but has a georocks of probable Proterozoic protolith age.
morphic grain that is at least as well developed dgylonitic foliation generally dips southward to
in areas underlain by mylonitic rocks. The northwestward toward the foot of the ranges and, i 180 270
northwest-striking dike swarm in the central parthe Santa Catalina and Rincon Mountains, be Drainage Azimuth

of the range, and a parallel dominant fracture setgath the trace of the Santa Catalina detachme:«

10

had significant influence on range geomorphoffault. Dominantly top-to-the-southwest shear- N £

ogy (e.g., Reynolds, 1985, Fig. 5), but the physiing during exhumation of the complex is indi- B N - § 2

cal processes responsible for the lineation-paratated by asymmetric mylonitic petrofabrics, " g ﬁ% &

lel drainages and ridges overwhelmed geomorphadfset markers, fold vergence, and the gros Tanque Verde § wls §

influences from these structural and lithologi@symmetry of the mylonitic fabrics across the Ridge 8 é E; S

features. range (Davis, 1983; Wust, 1986; Spencer an 20 moHE A
Alternatives to the generally accepted origirReynolds, 1989a; Reynolds and Lister, 199C _ |

of the South Mountains as an uncovered antifoNaruk and Bykerk-Kauffman, 1990; Dickinson,
mal corrugation of a detachment fault include991; Force, 1997). Embayments and promor
postdetachment folding of a planar surface ttories on the southern flank of the Santa Catalir
produce a doubly plunging antiformal fold, andMlountains and the western flank of the Rincot 5 |
uplift as a horst or tilt block bounded by eastMountains reflect the corrugated form of the de
northeast—striking normal faults. With these altachment fault and roughly concordant mylonitic o -
ternatives, streams would be expected to flow aleliation. Tilted, hanging-wall conglomerates 0 90 180 270 360
most entirely to the northwest and southeastpntain locally abundant mylonitic debris at higk Drainage Azimuth

down the flanks of the range, with only minorstratigraphic levels and indicate that subaeric

drainages flowing toward the ends of the rangexposure and erosion of the footwall occurrer  Figure 3. Histograms of drainage trends
To evaluate the statistical significance of linduring detachment faulting (Pashlel966; for (A) the South Mountains and (B) western
eation-parallel drainages, and these alternativEsckinson, 1991, 1999). The mylonitic rocks Tanque Verde Ridge in the Rincon Moun-
for antiform genesis, streams within bedroclkcooled through K-Ar biotite and muscovite clo-tains. Only drainages on bedrock marked by
that were marked by a blue line on U.S. Geologsure temperatures and apatite and zircon fissioa blue line on U.S. Geological Survey (USGS)
ical Survey (USGS) 1:24 000 scale topographitrack annealing temperatures between about :1:24 000 scale topographic maps were used
maps were divided into 250-m-long segmentand 19 Ma (Livingston et al., 1967; Marvin (from Lone Butte, Guadalupe, Laveen, and
and the trend of each segment was measuredefal., 1973, 1978; Creasey et al., 1977; MarviTanque Verde Peak USGS 7¥guadrangle
histogram of measurements reveals four evengnd Cole, 1978). maps). Each drainage was marked at fixed
spaced peaks, two that correspond to drainagesTanque Verde Ridge in the Rincon Mountainsintervals (250 m for the South Mountains,
that flow toward the flanks of the range, and twavhich is the largest corrugation in the Catalin’500 m for Tanque Verde Ridge), and the
that represent drainages that flow toward theore complex, is incised by a drainage that rurtrend of each line defined by two sequential
ends (Fig. 3). Such large peaks, or any peaksa@nspicuously down the crest of the western pepoints, traveling downstream, was measured
all, for drainages toward the northeast and soutbf the ridge without dropping off down the steepe(332 measurements from the South Moun-
west ends of the range would not be expected fadge flanks (Fig. 4A; Pain, 1985). The upper partains, 230 measurements from Tanque Verde
a horst, tilt block, or doubly plunging antiformal of the drainage and two flanking ridge crests trenRidge). The histograms thus are statistical
fold. A doubly plunging antiformal fold would 245° to 250°, essentially parallel to the 250° + 10representations of drainage orientation in
be expected to produce a radial to bimoddllo) trend of mylonitic lineation (116 lineations each area.

10
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Figure 4. Topographic contour maps for selected areas in the Catalina metamorphic core complex. Straight lines with indicatezht! are
aligned with linear topographic features. (A) Tanque Verde Ridge. Arrows point to drainages that are on the flanks of the Tanquerde antiform
but are aligned with its axis. (B) Posta Quemada antiform. PQC—Posta Quemada Canyon; SC—Shaw Canyon; Y Xg— Proterozoic graniick;
Pzu—~Paleozoic sedimentary rocks, mostly calcareous; Ts— Tertiary sedimentary rocks. Arrow points to small canyon in the hangivadl of the
Santa Catalina detachment fault that may have been continuous with Shaw Canyon and guided its incision into the footwall of detachment
fault as it was tectonically uncovered. The original Shaw Canyon drainage is interpreted to have been broken when the uppeche@vhat is now
upper Shaw Canyon) was captured by a south-flowing drainage at the indicated capture point. (C) Southwestern Tortolita Mountaif&old, ir-
regular lines mark ridge-crest drainage divides. 200 ft = 61 m; 400 ft = 122 m.
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The lower end of the canyon is underlain byirely of granitoids and amphibolite-grade gneissteep range flanks. These drainage paths do not
weakly fractured, resistant leucogranite that corfRehrig and Reynolds, 1980; Shackelford, 198%ppear to have been controlled by fractures or
tains no obvious drainage-controlling fractures. liDbrewes et al., 1990; Reynolds and Spencer, 1998hologic contrasts. The corrugation-parallel
general, the western part of the antiform (area &ichard et al., 1994; Bryant, 1995). These rockdrainages within high-elevation, low-relief areas
Fig. 4A) has steep, smooth flanks and a crest thaite overprinted by a gently to moderately dippingppear to be relicts of an older drainage system
varies from fairly flat at higher elevations to fairlymylonitic fabric exposed for as much as 40 knthat is being degraded by headward erosion and
sharp at lower elevations. A bimodal stream-flovalong corrugation axes (Spencer and Reynoldstream capture from steep, range-flank drainages.
pattern, with flow directed down the flanks of thel991). Top-to-the-northeast displacement ofor example, one stream capture seems likely in
ridge, would be expected. However, a histograrthe hanging wall is indicated by several feathe geologic near future on the southeast flank of
of drainage orientations in the western part dlres, including asymmetric mylonitic petro-the Browns Canyon drainage in the Harquahala
Tanque Verde Ridge shows two peaks for drainadebrics (Rgnolds and Lister, 1990; Scott, 1995),Mountains (A in Fig. 5E). Statistical analysis of
off of the flanks of the ridge, and a third peak foregional northeast dip of the upward bounding delrainages was not undertaken but probably
drainage down the nose of the ridge and subparékchment-fault system (Rehrig and Reynoldsyould be complicated because drainage patterns
lel to mylonitic lineation (Fig. 3B). 1980; Richard et al., 1990; Spencer and Reynoldsave also been influenced by tilting associated
In the southern Rincon and Tortolita Moun-1990, 1991), displaced rock units (Reynolds andith young range-crossing high-angle faults in
tains of the Catalina core complex, corrugationSpencer, 1985), and northeastward decrease in tiae Harquahala and Harcuvar Mountains. Fur-
are not sufficiently well defined to derive welldiometric cooling ages (Richard et al., 1990; Foshermore, corrugation-parallel drainages on the
constrained antiform-axis orientations, and linter et al., 1993; Scott et al., 1998). Tilted hangingends of the southern corrugation in the Buckskin
ear drainage trends can only be closely comvall rocks in the Buckskin and RawhideMountains could be largely oriented down the re-
pared to each other, to the general slope directidountains include abundant mylonitic debris shedional slope, as with the southern Rincon Moun-
of each range front, and to mylonitic lineationfrom the footwall that was denuded by detachmettins. Drainage patterns in the areas shown in
Linear drainages in these areas are superimpogaditing (Spencer and Reynolds, 1989b). Exterfigure 5, A-E, are so similar to those in the South
on rocks that do not contain lithologic featuresion began at about 26 Ma and continued untllountains and at Tanque Verde Ridge, however,
such as dikes that were likely to have controlledbout 12 Ma (Richard et al., 1990; Bryant et althat it seems likely that all the drainages have a
drainage orientation, and possible controllind991; Foster et al., 1993; Spencer et al., 1995jmilar origin.
structures such as a well developed set of plan8cott et al., 1998). Subaerial exposure of the my-
fractures have not been identified. Two linealonitic rocks occurred late during this period of exDISCUSSION
drainages and three flanking ridge crests in thtension (Spencer and Reynolds, 1989b).
southern Rincon Mountains, all with virtually Numerous small canyons and ridge crests ap- Lineation-parallel drainages incised into Ari-
identical trends, are within 6° of the averaggroximately parallel corrugation axes and myzona’s corrugated metamorphic core complexes
243.5° trend of local mylonitic lineation lonitic lineations. Conspicuously linear ridgeswere first identified and described by Pain
(Fig. 4B). These drainages are incised into thend canyons in mylonitic rocks at three location§l985), who proposed a two-stage model for their
nose of the Posta Quemada antiform, but thHa the Buckskin and Harcuvar Mountains arerigin, as follows: (1) initial drainage incision
broad, rounded shape of the plunging antiforrwithin 12° of the trend of local mylonitic lin- when the denuded footwalls were planar slopes,
does not make these drainages look conspiceation (Fig. 5, A, B, and C). Linear geomorphidollowed by (2) folding of footwalls so that some
ously anomalous and it is not clear that they di@atures are also present in nonmylonitic rockdrainages were carried upward on the crests of
not simply plunge down the regional slopeadjacent to areas of mylonitization. In the westising antiforms. This proposed origin is prob-
However, strong parallelism among drainagegrn Harcuvar Mountains a deep canyon is incisdematic for at least three reasons: (1) it would re-
ridges, and mylonitic lineation is suggestive oparallel to the long axis of the range (Fig. 5D)quire folding of cold crystalline rocks, in this case
tectonic control of drainage orientation, as i§he head of this canyon is a moderate to low-ret the Earth’s surface, without any other structural
similarity of all these features to other antiformdief area surrounded on three sides by long, steemanifestations of shortening, (2) it is inconsistent
where drainages trend conspicuously along aslopes. Granitic rocks in this area are fractured inith paleomagnetic data from the South Moun-
tiform crests. In the southern Tortolita Moun-various directions, and do not contain a singleains that show no folding after high-temperature
tains, drainages and intervening ridge crests aveell developed, northeast-striking fracture seacquisition of remanent magnetization (Livaccari
conspicuously linear and parallel, trend withirthat would have influenced drainage incision tet al., 1995), and (3) fold axes in each range
15¢ of local mylonitic lineation, and are obliqueproduce the range-parallel drainages. A similarould have to be strongly aligned with the dip di-
to the more southerly general slope of the rangaoderate- to low-relief area in upper Brownsection of an older and possibly inactive fault,

front (Fig. 4C). Canyon in the eastern Harquahala Mountains imnd with older mylonitic lineation, without any
cludes two linear drainage segments that parallebvious reason for such alignment.
Harcuvar Metamorphic Core Complex the adjacent northeast-trending southern edge ofOne alternative possibility is that corruga-

the low-relief area (Fig. 5E). The leucocratidion-parallel fractures in footwall rocks con-
Five parallel antiforms that make up the backBrowns Canyon granite is only weakly fracturedirolled drainage incision. However, to prevent
bone of the Rawhide, Buckskin, Little Buckskin,and some of the drainages in upper Brownstreams from flowing off antiform crests and
and Harcuvar Mountains define a corrugated su€anyon are cut on broad, low-relief swales of redown steep antiform flanks, a single set of cor-
face with crest-to-crest wavelengths of 8—12 krsistant, weakly fractured leucogranite. rugation-pardel fractures would have to exert
and crest-to-trough amplitudes of 200—2000 m In general, linear, corrugation-parallel drain-substantially greater geomorphic control than the
(Fig. 5). The Harquahala Mountains make up ages developed in both mylonitic (Fig. 5, A, B total influence of fractures of all other orientations.
sixth antiform with an axis 25 km southeast of thand C) and nonmylonitic (Fig. 5, D and E) rocksSuch a dominant fracture set has not been identi-
axis of the Harcuvar antiform (Fig. 5). Footwalland in some areas follow more gently slopindied in any of Arizona’s metamorphic core com-
rocks in all of these ranges consist almost emidge-crest paths instead of descending dowplexes. Some extension-parallel drainages in the
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Harquahala and Tanque Verde antiforms are :
perimposed on remarkably unfractured, gent
sloping surfaces of resistant, beautifully expos:
leucogranite. In other areas, such as the west
Harcuvar Mountains, steep fractures strike in ¢
verse directions and do not seem to have cau
preferential weathering in any particular directic
except locally.

A more viable possibility is that small, con
cave-upward grooves in detachment-fault st
faces, with amplitudes of tens of meters ar
wavelengths of hundreds of meters, localized it
tial erosional incision on the freshly denude | |, . . N ! x
footwall. Detachment-fault grooves at this sca | & / .-"' [ T S0y 'Iil"'- L Y S

. . LA T S | s LI h l"l.
are not obvious in the maps of many detachm¢ ¥ .~ =} Lo I"'u " r ),." Y VoL !
faults, but they exist in a few areas, such as at - ! o ) P Somhon
Copper Penny Mine in the Buckskin Mountair I‘ﬂ' ”j S "'rrll' AR 8 A LN l\" | C ’/I AR
(Spencer and Reynolds, 1989b), in the souther~ Figyre 6. Hypothetical contour map of sequential incision of extension-parallel drainage dur-
Rincon Mountains (Drewes, 1977), and belowing detachment faulting. (A) Detachment fault indicated by heavy line with double ticks on
the low-angle Mohave Wash normal fault in thenanging-wall block, dips down canyon with a stream in the canyon bottom. Angteis between
Chemehuevi Mountains of California (John, map-view trace of fault and topographic contour line on hanging-wall block. (B) A single fault-
1987). High-resolution, three-dimensional map-sjip event displaces the footwall block relative to the hanging-wall block by the amount indicated
ping of detachment faults using global position-hy arrow. Stream flows onto denuded fault ramp at A, crosses it, and reaches fault trace at B. If
ing system receivers might determine that sucq js <90°, stream will then flow down fault trace to C, where it reenters the old stream bed.
grooves are more common than is apparent frolC) Cumulative offset of three slip events, indicated by arrow, results in detailed irregularity to
existing maps and are therefore more likely tthew stream channel, but net result is formation of an extension-parallel drainage segment ex-
have localized lineation-parallel drainages. tending from point A to point G.

Another viable scenario relies on typical nor-
mal-fault-related topography where the footwall
block is elevated relative to the hanging-wall
block, and the hanging-wall block receives watewall canyons are absent and aggrading alluvial It is possible to assess the relative significance
flowing off the footwall block. Consider the casefans form the trailing end of the hanging-wallof these two viable mechanisms of drainage con-
where the footwall of a detachment fault forms &lock, but would be applicable where fans head#ol in the southern Rincon Mountains. Two lin-
gently plunging antiformal ridge with incised or bedrock, are incised. Most important, thisar drainages incised in footwall rocks near the
drainages that are directed radially outward frobrmechanism will generally produce extensionerest of the Posta Quemada antiform approxi-
the nose of the antiform and that cross the dearallel drainages regardless of initial stream orimately parallel mylonitic lineation and inferred
tachment fault around the periphery of the arentation or regional slope. fault-slip direction (Fig. 4B). A down-plunge
tiform. After a slip event on the detachment fau
water flowing down an incised footwall drainag
empties onto the smooth fault surface of tl
freshly denuded footwall, crosses the detac
ment-fault trace, and then continues within tt 800
same hanging-wall canyon. If a stream cros:
the detachment fault at any point other than at
crest of the antiform, it will flow down the fault-
dip line and then be deflected slightly and rt
along the fault trace for a distance equal to t
strike-slip component of offset of the previot 200 4
slip event. Surface-hydraulic connection betwe
individual footwall and hanging-wall drainages | 0 T T T T T T T T
maintained following each fault-slip event, an 0 1 2 3 4 5 6 7 8
each new fault-slip event lengthens extensic kilometers
parallel drainage segments, even on the flanks
an antiform where stream incision may occul Figure 7. Down-plunge view (plunge 10°, azimuth 240°) of the Santa Catalina detachment
along a path highly oblique to regional slopefault, Posta Quemada antiform, Rincon Mountains (see Davis and Hardy, 1981, for an expanded
(Fig. 6). Furthermore, incision into the fault rampdown-plunge view). The down-plunge projection of two straight, lineation-parallel canyons and
should be rapid because of the poor resistance three straight, parallel ridges are shown here, and these features are located in Figure 4B. Shaw
typical footwall fault breccias and underlying Canyon projects down plunge into the structurally highest point on the fault surface and so was
chloritic breccias. This mechanism of streamnot guided during initial incision by a concave-upward groove in the fault ramp. More likely, its
incision control is not applicable where hanging-incision was guided by the process shown in Figure 6.
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