

13.012 Marine Hydrodynamics for Ocean Engineers Prof. Alex Techet Fall 2004

> HW #9 (Optional, but good practice for exam!?!)

> > Out: 30 November 2004 "Due": 7 December 2004

Assume water density  $\rho = 1000 \text{ kg/m}^3$ 

**Problem 1:** An inventor gives you a propeller and claims that it can give 50N of thrust at a boat speed of 1.8 m/s and uses only 100 watts of power (to the propeller shaft):

The propeller is 0.2m in diameter and rotates at 1200 RPM (20 RPS). It has 3 blades.

- a) What is the efficiency of the propeller at this condition?
- b) What is the Non-dimensional operating point for this prop (Ct, Kt & J)?
- c) Is this efficiency possible (Actuator Disk)?
- d) What is the best efficiency that this real propeller could achieve ideally (use Kramer diagram)?
- e) Practically what would you expect the efficiency of a typical propeller to be? (i.e use given B-series chart)

**Problem 2:** The following data is collected for a model propeller tested at MIT's water tunnel:

| Water speed m/s | RPM     | Thrust (N) | Torque (N-m) |
|-----------------|---------|------------|--------------|
| 0.00            | 1200.00 | 50.00      | 0.50         |
| 0.20            | 1205.00 | 45.20      | 0.48         |
| 0.40            | 1202.00 | 40.10      | 0.46         |
| 0.60            | 1201.00 | 35.15      | 0.44         |
| 0.80            | 1195.00 | 29.91      | 0.42         |
| 1.00            | 1200.00 | 25.00      | 0.40         |
| 1.20            | 1201.00 | 20.02      | 0.38         |
| 1.40            | 1198.00 | 14.98      | 0.36         |
| 1.60            | 1200.00 | 9.98       | 0.34         |
| 1.80            | 1201.00 | 5.00       | 0.32         |
| 2.00            | 1199.00 | 0.00       | 0.30         |

The test propeller was 0.12 m in diameter with 2 blades

The full scale ship using the full scale version of this propeller has the following resistance characteristics:

Thrust: 10000N @ Ship Speed: 10 m/s

- 1. Plot the MIT data in a non-dimensional propeller plot showing Kt,Kq, eff. vs. J.
- 2. What is the maximum efficiency of the propeller? At what Kt, J does this occur?
- 3. What is the Diameter and RPM that the full scale propeller should have for best efficiency? Hint write down the equations for Kt and J and and plug in what you know to solve for N and D.
- 4. What will the torque and shaft power be for the full scale propeller under these conditions?