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13.021 - Marine Hydrodynamics
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Vortex Shedding and Vortex Induced Vibrations
Consider a steady flow U, on a bluff body with diameter D.
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We would expect the average forces to be:
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The measured oscillatory forces are:
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Von Karman Street: Unsteady non-symmetric wake of staggered array of vortices.

Frequency of vortex shedding f = w/27 is given by a non-dimensional number.
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where f is the Strouhal frequency, D is the body diameter and S is the Strouhal number. The Drag F),
has frequency 2f and non-zero mean value, and the Lift F, has frequency f, but zero mean value. For
laminar flow S ~ 0.22 for a cylinder, and for turbulent flow, S ~ 0.3 for a cylinder.
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Cp and Cp, are functions of the correlation length. For ”"oo” correlation length, C; ~ O(1) for a fixed
cylinder, comparable to C'p. For a moving cylinder, if the Strouhal frequency f is close to one of the
cylinder natural frequencies, lock-in occurs. Therefore, if one natural frequency is close to the Strouhal
Frequency fg, we have large amplitude of motion = Vortex induced vibration (VIV).

4.2 — Drag on a very streamlined body: Flat Plate
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Unlike a bluff body, Cy is a strong function of Re since D is proportional to v. (7‘ = yg—‘;)
Flat Plate Drag
C
0.0 Laminar
' Turbulent
0.00
10° 10 Re

e Re depends on plate smoothness, ambient turbulence, ...



e In general, Ct’s are much smaller than Cp’s (a factor of 10 : 100). Therefore, designing streamlined
bodies allows minimal separation and form drag (at the expense of friction drag).

e In general, for streamlined bodies

Corce 1s a combination of Cp (Re) and Cf (Re)

where Cp is a function of the regime and Cy is a function of Re;, continuously.

Governing equations:

e Navier-Stokes’:
ov - ~ 1 . 1=
8_:+ (v-V)v = —EV]H-VV%%—;J‘"
e Conservation of mass:
V-v=0
e Boundary conditions on solid boundaries “no-slip”:
v=0U

Equations very difficult to solve, analytic solution only for a few very special cases (usually when

(v-V)v=0...)

4.3 Steady Laminar Flow Between 2 Infinite Parallel Walls - Plane Couette Flow

pod LLLLL L L L L E>U

<>




or the horizontal dimensions (z, z) >> h, we assume flow independent of

Assume steady flow (

r and z, i.e., g;, gg
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=0)
, 80 U =19(y).

e Kinematic boundary conditions (k.b.c.):

e Conservation of mass:
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but v =0 on y =0, h (k.b.c.), therefore v = 0.

e Navier-Stokes equation for steady flow (% =0), no f and g—g = g—g =v=0:
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We assume that p = p(x), i.e. gﬁ’ = 0, then V% Y =0—w=a+by. Butkb.c:c w=0o0ny=0,h.

Therefore, w = 0.

Finally: v =w = 0,u = u(y),p = p(x)

d*>uv  1dp
— = —— where pu = pv

dy?> pdx
e Solution:

= 2y2;§§ + Cy + Coy



kb.c: Cp =0and Cy = (U - %h%g—i) since u(0) = 0 and u(h) = U. Finally,

1
u= % (y —h) yg—i + % (plane) Couette flow

4.4 - Steady Laminar Flow in a pipe - Poiseuille Flow.

Assume steady, and for L >> a, % = g—g =0—0=10(r),r*=9>+ 22
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Can show:
VU = Vg = O, Vy = /Ux(r>7 b= p(l’)

ldp 1d dv,
pdx_y rdr Tdr
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T component of V2

in cylindrical coordinates
K.b.c.: vy(a) =0 (no slip) and %=(0) = 0 (symmetry).
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Solution:

1 d
v (r) = m (—d—i?) (a* = r?) Pouseuille flow

4.5 Unsteady Flow ( boundary layer growth) over an infinite flat plate

Couette

For steady ( Poiseuille

- L . h
)ﬂow, vorticity, viscosity effects diffuse to all( a )

1. limit x

S —

Bﬂndary layer grows withx ~ ————> Couette flow for x >>a

2. limit t (§4.5)

Consider the simplest example of an infinite plate in unsteady motion:
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u(t)
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Assuming Vp = 0, we have V%, % =0,s0 v =0 (y,t)

Can show that v = w = 0 and u = u(y, t).
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Finally:
O _ U eat diffusi ti (1)
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momentum

(velocity)

B.c.: w(0,t) = U(t),t > 0; u bounded (— 0) as y — oo + suitable initial condition.

4.5.1 Sinusoidally Oscillating Plate

U(t) = U,coswt = Real {U,e™'} € = cosa + isina where a is real. Let u (y,t) = Real {f (y) e}
where f(y) is an unknown complex (magnitude & phase) amplitude. Then (1):

d2
iwf = V— «— 2" order ODE for f(y)

General Solution:

f (y) = Cle(lﬂ)( \% W/QV) + C —(144) (\/w/Qlj)y
B.c.: u — bounded as y — o0, C; = 0. u — U(t) as y = 0,Cy = U,.

Finally:

u(y,t) = er_( v “/QV)ycos (—ﬂ / %y + wt) Stokes’ (Oscillatory) b.l.



4.5.2 Impulsively Started Plate

u()
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u(y,t) : 5 Va—y2
B.c.
u(o,t) = U, : -
(oo, ) = } for t > 0,i.e. u(y,0) =0

Problem has no explicit time scale, can use dimensional analysis to solve in terms of a similarity param-
eter:
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Solution:
5
Uﬂo = erfc(n) :1—erf(n):1—ﬁ/e_“2da
~~~ 0
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