13.021 – Marine Hydrodynamics, Fall 2004 Lecture 15

Copyright © 2004 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics Lecture 15

Vortex Shedding and Vortex Induced Vibrations

Consider a steady flow U_o on a bluff body with diameter D.

We would **expect** the average forces to be:

The **measured** oscillatory forces are:

Von Karman Street: Unsteady non-symmetric wake of staggered array of vortices.

Frequency of vortex shedding $f = \omega/2\pi$ is given by a non-dimensional number.

$$\frac{fD}{U_0} = S(Re)$$

where f is the Strouhal frequency, D is the body diameter and S is the Strouhal number. The Drag F_x has frequency 2f and non-zero mean value, and the Lift F_y has frequency f, but zero mean value. For laminar flow $S \sim 0.22$ for a cylinder, and for turbulent flow, $S \sim 0.3$ for a cylinder.

 C_D and C_L are functions of the correlation length. For " ∞ " correlation length, $C_L \sim O(1)$ for a fixed cylinder, comparable to C_D . For a moving cylinder, if the Strouhal frequency f is close to one of the cylinder natural frequencies, lock-in occurs. Therefore, if one natural frequency is close to the Strouhal Frequency f_S , we have large amplitude of motion \Rightarrow **Vortex induced vibration** (VIV).

4.2 – Drag on a very streamlined body: Flat Plate

Unlike a bluff body, C_f is a strong function of Re since D is proportional to ν . $\left(\tau = \nu \frac{\partial u}{\partial y}\right)$

Flat Plate Drag

• *Re* depends on plate smoothness, ambient turbulence, ...

- In general, C_f 's are much smaller than C_D 's (a factor of 10 : 100). Therefore, designing streamlined bodies allows minimal separation and form drag (at the expense of friction drag).
- In general, for streamlined bodies

 C_{force} is a combination of $C_D(Re)$ and $C_f(Re)$

where C_D is a function of the regime and C_f is a function of Re_L continuously.

Governing equations:

• Navier-Stokes':

$$\frac{\partial \vec{v}}{\partial t} + \left(\vec{v} \cdot \nabla \right) \vec{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} + \frac{1}{\rho} \vec{f}$$

• Conservation of mass:

 $\nabla \cdot \vec{v} = 0$

• Boundary conditions on solid boundaries "no-slip":

 $\vec{v} = \vec{U}$

Equations very difficult to solve, analytic solution only for a few very special cases (usually when $(\vec{v} \cdot \nabla) \vec{v} = 0...$)

4.3 Steady Laminar Flow Between 2 Infinite Parallel Walls - Plane Couette Flow

Assume steady flow $(\frac{\partial}{\partial t} = 0)$. For the horizontal dimensions (x, z) >> h, we assume flow independent of x and z, i.e., $\frac{\partial \vec{v}}{\partial x}, \frac{\partial \vec{v}}{\partial z} = 0$, so $\vec{v} = \vec{v}(y)$.

• Kinematic boundary conditions (k.b.c.):

$$\vec{v} = (0, 0, 0)$$
 on $y = 0$
 $\vec{v} = (U, 0, 0)$ on $y = h$

• Conservation of mass:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \to \frac{\partial v}{\partial y} = 0 \to v = v(x, z),$$

but v = 0 on y = 0, h (k.b.c.), therefore v = 0.

• Navier-Stokes equation for steady flow $(\frac{\partial}{\partial t} = 0)$, no \vec{f} and $\frac{\partial \vec{v}}{\partial x} = \frac{\partial \vec{v}}{\partial z} = v = 0$:

$$u : \nu \frac{\partial^2 u}{\partial y^2} = \frac{1}{\rho} \frac{\partial p}{\partial x}$$
$$v : \frac{\partial p}{\partial y} = 0 \to p = p (x, z)$$
$$w : \nu \frac{\partial^2 w}{\partial y^2} = \frac{1}{\rho} \frac{\partial p}{\partial z}$$

We <u>assume</u> that p = p(x), i.e. $\frac{\partial p}{\partial z} \equiv 0$, then $\nu \frac{\partial^2 w}{\partial y^2} = 0 \rightarrow w = a + by$. But k.b.c.: w = 0 on y = 0, h. Therefore, $w \equiv 0$.

Finally: v = w = 0, u = u(y), p = p(x)

$$\frac{d^2u}{dy^2} = \frac{1}{\mu}\frac{dp}{dx}$$
 where $\mu = \rho\nu$

• Solution:

$$u = \frac{1}{2}y^2 \frac{1}{\mu} \frac{\partial p}{\partial x} + C_1 + C_2 y$$

k.b.c.:
$$C_1 = 0$$
 and $C_2 = \left(U - \frac{1}{2}h^2 \frac{1}{\mu} \frac{dp}{dx}\right)$ since $u(0) = 0$ and $u(h) = U$. Finally,
$$u = \frac{1}{2\mu} \left(y - h\right) y \frac{dp}{dx} + \frac{Uy}{h} \text{ (plane) Couette flow}$$

4.4 - Steady Laminar Flow in a pipe - Poiseuille Flow.

<u>Assume</u> steady, and for L >> a, $\frac{\partial \vec{v}}{\partial x} = \frac{\partial \vec{v}}{\partial \theta} \equiv 0 \rightarrow \vec{v} = \vec{v}(r), r^2 = y^2 + z^2$.

$$\vec{v} = (v_x, v_r, v_\theta)$$

Can show:

$$v_r = v_\theta = 0, \ v_x = v_x(r), \ p = p(x)$$
$$\frac{1}{\rho} \frac{dp}{dx} = \nu \underbrace{\left(\frac{1}{r} \frac{d}{dr} \left(r \frac{dv_x}{dr}\right)\right)}_{r_x = v_x(r)}$$

r component of $abla^2$

in cylindrical coordinates

K.b.c.: $v_x(a) = 0$ (no slip) and $\frac{dv_x}{dr}(0) = 0$ (symmetry).

Solution:

$$v_x(r) = \frac{1}{4\mu} \left(-\frac{dp}{dx}\right) \left(a^2 - r^2\right)$$
 Pouseuille flow

4.5 Unsteady Flow (boundary layer growth) over an infinite flat plate

For <u>steady</u> $\begin{pmatrix} Couette \\ Poiseuille \end{pmatrix}$ flow, vorticity, viscosity effects diffuse to all $\begin{pmatrix} h \\ a \end{pmatrix}$

1. limit x

2. limit t $(\S4.5)$

Consider the simplest example of an infinite plate in unsteady motion:

Assuming
$$\nabla p = 0$$
, we have $\nabla \frac{\partial \vec{v}}{\partial x}, \frac{\partial \vec{v}}{\partial z} = 0$, so $\vec{v} = \vec{v} (y, t)$

Can show that v = w = 0 and u = u(y, t).

$$\frac{\partial u}{\partial t} + u \underbrace{\frac{\partial u}{\partial x}}_{=0} + \underbrace{v}_{=0} \frac{\partial u}{\partial y} + \underbrace{w \frac{\partial u}{\partial z}}_{=0} = -\frac{1}{\rho} \underbrace{\frac{\partial p}{\partial x}}_{=0} + \nu \left(\underbrace{\frac{\partial^2 u}{\partial x^2}}_{=0} + \frac{\partial^2 u}{\partial y^2} + \underbrace{\frac{\partial^2 u}{\partial z^2}}_{=0} \right)$$

Finally:

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial y^2} \underbrace{\text{``heat''}}_{\text{momentum}} \text{ diffusion equation}$$
(1)

B.c.: u(0,t) = U(t), t > 0; u bounded $(\to 0)$ as $y \to \infty +$ suitable initial condition.

4.5.1 Sinusoidally Oscillating Plate

 $U(t) = U_o \cos \omega t = \text{Real} \{ U_o e^{i\omega t} \}$ $e^{i\alpha} = \cos \alpha + i \sin \alpha$ where α is real. Let $u(y, t) = \text{Real} \{ f(y) e^{i\omega t} \}$ where f(y) is an unknown complex (magnitude & phase) amplitude. Then (1):

$$i\omega f = \nu \frac{d^2 f}{dy^2} \leftarrow 2^{nd} \text{ order ODE for } f(y)$$

General Solution:

$$f(y) = C_1 e^{(1+i)(\sqrt{\omega/2\nu})y} + C_2 e^{-(1+i)(\sqrt{\omega/2\nu})y}$$

B.c.: $u \to \text{bounded as } y \to \infty, C_1 = 0. \ u \to U(t) \text{ as } y = 0, C_2 = U_o.$

Finally:

$$u(y,t) = U_o e^{-\left(\sqrt{\omega/2\nu}\right)y} \cos\left(-\sqrt{\frac{\omega}{2\nu}}y + \omega t\right)$$
 Stokes' (Oscillatory) b.l.

4.5.2 Impulsively Started Plate

$$u\left(y,t
ight):rac{\partial u}{\partial t}=
urac{\partial^{2}u}{\partial y^{2}}$$

B.c.:

$$\begin{array}{l} u(o,t) = U_o \\ u(\infty,t) = 0 \end{array} \right\} \text{ for } t > 0, \text{i.e. } u(y,0) = 0 \end{array}$$

Problem has no explicit time scale, can use $\underline{\text{dimensional analysis}}$ to solve in terms of a similarity parameter:

$$\frac{u}{U_o} = f(y, t, \nu) = \underbrace{f\left(\frac{y}{2\sqrt{\nu t}}\right)}_{\equiv \eta \text{ similarity}}; \text{i.e. } \frac{u}{U_o} = \underbrace{f(\eta)}_{\text{Self similar}}_{\text{solution}}$$

Solution:

$$\underbrace{\frac{u}{U_o}}_{\text{Impulsively}} = \underbrace{erfc(\eta)}_{\text{Complementary}} = 1 - erf(\eta) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\eta} e^{-\alpha^2} d\alpha$$

$$\underbrace{error \text{ function}}_{\text{flat-plate}}$$
boundary
layer
solution