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Vortex Shedding and Vortex Induced Vibrations

Consider a steady flow Uo on a bluff body with diameter D.
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We would expect the average forces to be:
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The measured oscillatory forces are:
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Von Karman Street: Unsteady non-symmetric wake of staggered array of vortices.

Frequency of vortex shedding f = ω/2π is given by a non-dimensional number.

fD

U0

= S(Re)

where f is the Strouhal frequency, D is the body diameter and S is the Strouhal number. The Drag Fx

has frequency 2f and non-zero mean value, and the Lift Fy has frequency f , but zero mean value. For
laminar flow S ∼ 0.22 for a cylinder, and for turbulent flow, S ∼ 0.3 for a cylinder.

105 106 107

0.22

0.3

S(Re)

Re

2



CD and CL are functions of the correlation length. For ”∞” correlation length, CL ∼ O(1) for a fixed
cylinder, comparable to CD. For a moving cylinder, if the Strouhal frequency f is close to one of the
cylinder natural frequencies, lock-in occurs. Therefore, if one natural frequency is close to the Strouhal
Frequency fS, we have large amplitude of motion ⇒Vortex induced vibration (VIV).

4.2 – Drag on a very streamlined body: Flat Plate
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Unlike a bluff body, Cf is a strong function of Re since D is proportional to ν.
(
τ = ν ∂u

∂y

)

Flat Plate Drag
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• Re depends on plate smoothness, ambient turbulence, . . .
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• In general, Cf ’s are much smaller than CD’s (a factor of 10 : 100). Therefore, designing streamlined
bodies allows minimal separation and form drag (at the expense of friction drag).

• In general, for streamlined bodies

Cforce is a combination of CD (Re) and Cf (Re)

where CD is a function of the regime and Cf is a function of ReL continuously.

Governing equations:

• Navier-Stokes’:

∂
⇀
v

∂t
+

(
⇀
v · ∇)

⇀
v = −1

ρ
∇p + ν∇2⇀

v +
1

ρ

⇀

f

• Conservation of mass:

∇ · ⇀
v = 0

• Boundary conditions on solid boundaries “no-slip”:

⇀
v =

⇀

U

Equations very difficult to solve, analytic solution only for a few very special cases (usually when(
⇀
v · ∇)

⇀
v = 0. . . )

4.3 Steady Laminar Flow Between 2 Infinite Parallel Walls - Plane Couette Flow
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Assume steady flow ( ∂
∂t

= 0). For the horizontal dimensions (x, z) >> h, we assume flow independent of

x and z, i.e., ∂~v
∂x

, ∂~v
∂z

= 0, so ~v = ~v(y).

• Kinematic boundary conditions (k.b.c.):

~v =(0, 0, 0) on y = 0

~v =(U, 0, 0) on y = h

• Conservation of mass:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 → ∂v

∂y
= 0 → v = v(x, z),

but v = 0 on y = 0, h (k.b.c.), therefore v = 0.

• Navier-Stokes equation for steady flow ( ∂
∂t

= 0), no ~f and ∂~v
∂x

= ∂~v
∂z

= v = 0:

u :ν
∂2u

∂y2
=

1

ρ

∂p

∂x

v :
∂p

∂y
= 0 → p = p (x, z)

w :ν
∂2w

∂y2
=

1

ρ

∂p

∂z

We assume that p = p(x), i.e. ∂p
∂z
≡ 0, then ν ∂2w

∂y2 = 0 → w = a + by. But k.b.c.: w = 0 on y = 0, h.
Therefore, w ≡ 0.

Finally: v = w = 0, u = u(y), p = p(x)

d2u

dy2
=

1

µ

dp

dx
where µ = ρν

• Solution:

u = 1
2
y2 1

µ
∂p
∂x

+ C1 + C2y
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k.b.c.: C1 = 0 and C2 =
(
U − 1

2
h2 1

µ
dp
dx

)
since u(0) = 0 and u(h) = U . Finally,

u =
1

2µ
(y − h) y

dp

dx
+

Uy

h
(plane) Couette flow

4.4 - Steady Laminar Flow in a pipe - Poiseuille Flow.

Assume steady, and for L >> a, ∂~v
∂x

= ∂~v
∂θ
≡ 0 → ~v = ~v(r), r2 = y2 + z2.
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~v = (vx, vr, vθ)

Can show:

vr = vθ = 0, vx = vx(r), p = p(x)

1

ρ

dp

dx
= ν

(
1

r

d

dr

(
r
dvx

dr

))

︸ ︷︷ ︸
r component of ∇2

in cylindrical coordinates

K.b.c.: vx(a) = 0 (no slip) and dvx

dr
(0) = 0 (symmetry).

 

r = a 

Vx(r) 
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Solution:

vx(r) =
1

4µ

(
−dp

dx

) (
a2 − r2

)
Pouseuille flow

4.5 Unsteady Flow ( boundary layer growth) over an infinite flat plate

For steady

(
Couette
Poiseuille

)
flow, vorticity, viscosity effects diffuse to all

(
h
a

)

1. limit x

 

Boundary layer grows with x Couette flow for x >> a 

2. limit t (§4.5)

Consider the simplest example of an infinite plate in unsteady motion:
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U(t) 

Assuming ∇p = 0, we have ∇∂
⇀
v

∂x
, ∂

⇀
v

∂z
= 0, so

⇀
v =

⇀
v (y, t)

Can show that v = w = 0 and u = u(y, t).
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∂u

∂t
+ u

∂u

∂x︸︷︷︸
=0

+ v︸︷︷︸
=0

∂u

∂y
+ w

∂u

∂z︸︷︷︸
=0

= −1

ρ

∂p

∂x︸︷︷︸
=0

+ν


∂2u

∂x2︸︷︷︸
=0

+
∂2u

∂y2
+

∂2u

∂z2︸︷︷︸
=0




Finally:

∂u

∂t
= ν

∂2u

∂y2
“heat”︸ ︷︷ ︸

momentum

(velocity)

diffusion equation (1)

B.c.: u(0, t) = U(t), t > 0; u bounded (→ 0) as y →∞ + suitable initial condition.

4.5.1 Sinusoidally Oscillating Plate

U(t) = Uo cos ωt = Real {Uoe
iωt} eiα = cos α + i sin α where α is real. Let u (y, t) = Real {f (y) eiωt}

where f(y) is an unknown complex (magnitude & phase) amplitude. Then (1):

iωf = ν
d2f

dy2
← 2nd order ODE forf(y)

General Solution:

f (y) = C1e
(1+i)

(√
ω/2ν

)
y
+ C2e

−(1+i)
(√

ω/2ν
)
y

B.c.: u → bounded as y →∞, C1 = 0. u → U(t) as y = 0, C2 = Uo.

Finally:

u (y, t) = Uoe
−

(√
ω/2ν

)
y
cos

(
−

√
ω

2ν
y + ωt

)
Stokes’ (Oscillatory) b.l.
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4.5.2 Impulsively Started Plate

 U(t) 

t 

Uo 

u (y, t) :
∂u

∂t
= ν

∂2u

∂y2

B.c.:

u(o, t) = Uo

u(∞, t) = 0

}
for t > 0, i.e. u(y, 0) = 0

Problem has no explicit time scale, can use dimensional analysis to solve in terms of a similarity param-
eter:

u

Uo

= f (y, t, ν) = f

(
y

2
√

νt

)

︸ ︷︷ ︸
≡η similarity

parameter

; i.e.
u

Uo

= f (η)︸︷︷︸
Self similar

solution

Solution:

u

Uo︸︷︷︸
Impulsively

started

flat-plate

boundary

layer

solution

= erfc (η)︸ ︷︷ ︸
Complementary

error function

= 1− erf (η) = 1− 2√
π

η∫

0

e−α2

dα

9


