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13.021 – Marine Hydrodynamics
Lecture 3

1.2 - Stress Tensor

Stress Tensor τij:. The stress (force per unit area) at a point in a fluid needs nine components to be
completely specified, since each component of the stress must be defined not only by the direction in
which it acts but also the orientation of the surface upon which it is acting. The first index specifies
the direction in which the stress component acts, and the second identifies the orientation of the surface
upon which it is acting. Therefore, the ith component of the force acting on a surface whose outward
normal points in the jth direction is τij.
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Figure 1: Shear stresses on an infinitesimal cube whose surface are parallel to the coordinate system.
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Figure 2: Consider an infinitesimal body at rest with a surface PQR that is not perpendicular to any of
the Cartesian axis. The unit normal vector to that surface is n̂ = n1x̂1 + n2x̂2 + n3x̂3. The area of the
surface = A0, and the area of each surface perpendicular to Xi is Ai = A0ni, for i = 1, 2, 3.

Newton’s law:
∑

all4faces Fi = (volume force)i for i = 1, 2, 3

If δ is the typical dimension of the body : surface forces ∼ δ2

: volume forces ∼ δ3

An example of surface forces is the shear force and an example of volumetric forces is the gravity force.
At equilibrium, the surface forces and volumetric forces are in balance. As the body gets smaller, the mass
of the body goes to zero, which makes the volumetric forces equal to zero and leaving the sum of the surface
forces equal zero. So, as δ → 0,

∑
all4faces Fi = 0 for i = 1, 2, 3 and ∴ τiA0 = τi1A1 +τi2A2 +τi3A3 = τijAj.

But the area of each surface ⊥ to Xi is Ai = A0ni. Therefore τiA0 = τijAj = τij(A0nj), where τijAj is
the

∑
notation (represents the sum of all components). Thus τi = τijnj for i = 1, 2, 3, where τi is the

component of stress in the ith direction on a surface with a normal ~n . We call τ i the stress vector and
we call τij the stress matrix or tensor.

Example: Pascal’s Law for hydrostatics

In a static fluid, the stress vector cannot be different for different directions of the surface normal since
there is no preferred direction in the fluid. Therefore, at any point in the fluid, the stress vector must
have the same direction as the normal vector ~n and the same magnitude for all directions of ~n .
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Pascal’s Law: for hydrostatics τij =

no summation︷ ︸︸ ︷
− (pi) (δij)

τ
∼

=



−p1 0 0
0 −p2 0
0 0 −p3




where pi is the pressure acting perpendicular to the ith surface. If po is the pressure acting perpendicular
to the surface PQR, then τi = −nip0 , but τi = τijnj = −(pi)δijnj = −(pi)(ni). Therefore po = pi , i =
1, 2, 3 and ~n is arbitrary.

Symmetry of the Stress Tensor

To prove the symmetry of the stress tensor we follow the steps:
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Figure 3: Material element under tangential stress.

1. The
∑

of surface forces = body forces + mass× acceleration. Assume no symmetry. Balance of
the forces in the ith direction gives:

(δ)(τij)TOP − (δ)(τij)BOTTOM = O(δ2),

since surface forces are ∼ δ2, where the O(δ2) terms include the body forces per unit depth. Then,
as δ → 0, (τij)TOP = (τij)BOTTOM .

2. The
∑

of surface torque = body moment + angular acceleration. Assume no symmetry. The
balance moment with respect to o gives:
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(τjiδ)δ − (τijδ)δ = O(δ3),

since the body moment is proportional to δ3. As δ → 0 , τij = τji.

1.3 Mass and Momentum Conservation

Consider a material volume ϑm and recall that a material volume is a fixed mass of material. A material
volume always encloses the same fluid particles despite a change in size, position, volume or surface area
over time.

1.3.1 Mass Conservation

The mass inside the material volume is:

M(ϑm) =

∫∫∫

ϑm(t)

ρdϑ

 Sm(t) 

 

)t(mϑ

Figure 4: Material volume ϑm(t) with surface Sm(t).

Therefore the time rate of increase of mass inside the material volume is:

d
dt

M(ϑm) = d
dt

∫∫∫
ϑm (t)

ρdϑ = 0,

which implies conservation of mass for the material volume ϑm.
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1.3.2 Momentum Conservation

The velocity of fluid inside the material volume in the ith direction is denoted as ui. Linear momentum
of the material volume in the ith direction is

∫∫∫

ϑm(t)

ρuidϑ

Newton’s law of motion: The time rate of change of momentum of the fluid in the material control volume
must equal the sum of all the forces acting on the fluid in that volume. Thus:

d

dt
(momentum)i =(body force)i + (surface force)i

d

dt

∫∫∫

ϑm(t)

ρuidϑ =

∫∫∫

ϑm(t)

Fidϑ +

∫∫

Sm(t)

τijnj︸︷︷︸
τi

dS

Divergence Theorems: For vectors:
∫∫∫
ϑ

∇ · ~v︸︷︷︸
∂vj
∂xj

dϑ = ⊂⊃∫∫
S

~v.n̂︸︷︷︸
vjnj

dS

For tensors:
∫∫∫
ϑ

∂τij

∂xj
dϑ = ⊂⊃∫∫

S

τijnjdS

Thus using divergence theorems:

d
dt

∫∫∫
ϑm(t)

ρuidϑ =
∫∫∫

ϑm(t)

(
Fi +

∂τij

∂xj

)
dϑ,

which gives the conservation of the momentum for the material volume ϑm.

1.4 Kinematic Transport Theorems

Consider a flow through some moving control volume ϑ(t) during a small time interval ∆t. Let f (~x, t)
be any (Eulerian) fluid property per unit volume of fluid (e.g. mass, momentum, etc.). Consider the
integral
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I(t) =

∫∫∫

ϑ(t)

f (~x, t) dϑ

According with the definition of the derivative, we can write

d

dt
I(t) = lim

∆t→0

I(t + ∆t)− I(t)

∆t

= lim
∆t→0

1

∆t





∫∫∫

ϑ(t+∆t)

f(~x, t + ∆t)dϑ−
∫∫∫

ϑ(t)

f(~x, t)dϑ





 

S(t) 

 

S(t+∆t) 

)tt( ∆+ϑ

)t(ϑ   

Figure 5: Control volume ϑ and its bounding surface S at instants t and t + ∆t.

Next, we consider the steps

1. Taylor series expansion of f about t.

f(~x, t + ∆t) = f(~x, t) + ∆t
∂f

∂t
(~x, t) + O((∆t)2)

2.
∫∫∫

ϑ(t+∆t)

dϑ =
∫∫∫
ϑ(t)

dϑ +
∫∫∫
∆ϑ

dϑ where
∫∫∫
∆ϑ

dϑ =
∫∫

S(t)

[Un(~x, t)∆t] dS and Un(~x, t) is the normal velocity

of S(t).
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Figure 6: Element of the surface S at instants t and t + ∆t.

So we have

d

dt
I(t) = lim

∆t→0

1

∆t





∫∫∫

ϑ(t)

dϑf + ∆t

∫∫∫

ϑ(t)

dϑ
∂f

∂t
+ ∆t

∫∫

S(t)

dSUnf −
∫∫∫

ϑ(t)

dϑf + O(∆t)2





Kinematic Transport Theorem (KTT) ∼ Leibnitz rule in 3D

d
dt

∫∫∫
ϑ(t)

f(~x, t)dϑ =
∫∫∫
ϑ(t)

∂f(~x,t)
∂t

dϑ +
∫∫

S(t)

f(~x, t)Un(~x, t)dS

If the control volume is a material volume: ϑ(t) = ϑm(t) and Un = ~v · n̂, where ~v is the fluid particle
velocity. Then the Kinematic Transport theorem (KTT) assume the form

d

dt

∫∫∫

ϑm(t)

f(~x, t)dϑ =

∫∫∫

ϑm(t)

∂f(~x, t)

∂t
dϑ +

∫∫

Sm(t)

f(~x, t)(~v · n̂)︸ ︷︷ ︸
fvini(Einstein Notation)

dS

Using the divergence theorem:

∫∫∫

ϑ

∇ · ~α︸ ︷︷ ︸
∂

∂xi
αi

dϑ = ⊂⊃
∫∫

S

~α · n̂︸︷︷︸
αini

dS (1)

1st Kinematic Transport Theorem (KTT)
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d
dt

∫∫∫
ϑm(t)

f (~x, t) dϑ =
∫∫∫

ϑm(t)




∂f(~x,t)
∂t

+∇ · (f~v)︸ ︷︷ ︸
∂

∂xi
(fvi)


 dϑ,

where f is a fluid property per unit volume.

1.5 Continuity Equation

Let the fluid property per unit volume be mass per unit volume ( f = ρ)

0 =
↑

conservation
of mass

d

dt

∫∫∫

ϑm(t)

ρdϑ =
↑

1stKTT

∫∫∫

ϑm(t)

[
∂ρ

∂t
+∇ · (ρ~v)

]
dϑ

since ϑm is arbitrary, so the integrand ≡ 0 everywhere. Therefore, the differential form of conservation
of mass i.e. Continuity equation follows:

∂ρ

∂t
+∇ · (ρ~v) = 0

∂ρ

∂t
+ [~v · ∇ρ

︸ ︷︷ ︸
Dρ
Dt

+ ρ∇ · ~v] = 0

Therefore,

Dρ
Dt

+ ρ∇ · ~v = 0

In general, ρ = ρ(p, T, . . .). We consider the special case of incompressible flow (Note, the density of
the entire flow is not constant when we have more than one fluid, like water and oil, as illustrated in the
picture above).
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Figure 7: Interface of two fluids (oil-water)

Therefore, for an incompressible flow:

Dρ
Dt

= 0

Then ∇ · ~v or
∂vi

∂xi

= 0
︸ ︷︷ ︸
rate of volume dilatation

, which is the Continuity equation for incompressible fluid.

1.6 Euler’s Equation (differential form of conservation of momentum)

2nd Kinematic Transport Theorem ( = 1st KTT + continuity equation). If G = fluid property per unit
mass, then ρG = fluid property per unit volume

d

dt

∫∫∫

ϑm(t)

ρGdϑ =

∫∫∫

ϑm(t)

[
∂

∂t
(ρG) +∇ · (ρG~v)

]
dϑ

=

∫∫∫

ϑm(t)




G

(
∂ρ

∂t
+∇ · ρ~v

)

︸ ︷︷ ︸
0 from mass conservation

+ ρ

(
∂G

∂t
+ ~v · ∇G

)

︸ ︷︷ ︸
DG
Dt




dϑ,

and the 2nd Kinematic Transport Theorem (KTT) follows:

d
dt

∫∫∫
ϑm

ρGdϑ =
∫∫∫
ϑm

ρDG
Dt

dϑ
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Application:

We consider G as the ith momentum per unit mass ( vi). Then,

∫∫∫

ϑm(t)

(
Fi +

∂τij

∂xj

)
dϑ =

↑
conservation
of momentum

d

dt

∫∫∫

ϑm(t)

ρvidϑ =
↑

2ndKTT

∫∫∫

ϑm(t)

ρ
Dvi

Dt
dϑ

But ϑm(t) is an arbitrary material volume, therefore the integral identity gives Euler’s equation

ρDvi

Dt
≡ ρ


∂vi

∂t
+ ~v · ∇vi︸ ︷︷ ︸

vj
∂vi
∂xj


 = Fi +

∂τij

∂xj
,

and its Vector Tensor Form

ρD~v
Dt
≡ ρ

(
∂~v
∂t

+ ~v · ∇~v
)

= ~F +∇ · τ
∼
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