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13.021 - Marine Hydrodynamics

Lecture 4
Introduction
Governing Equations so far:
Knowns Number of Equations Number of Unknowns
p Continuity (conservation of 1 v 3
mass)
F; Euler (conservation of 3 |7 6 3 of 0 climinated by
momentum) ey

4 9

Therefore, some constitutive relationships are needed to relate v; to 7;.

1.7 Newtonian Fluid

1. Consider a fluid at rest (v; = 0). Then according to Pascal’s Law:

Ti; = —Ds0i; (Pascal’s Law)
—DPs 0 0
T = 0 —DPs 0
) 0 0 —Ds

where p; is the hydrostatic pressure and d;; is the Kroenecker delta function, equal to 1 if ¢« = j and
0if s +# 7.

2. Consider a fluid in motion. The fluid stress is defined as:

Tij = —pdij + Tij



where p is the thermodynamic pressure and 7;; is the dynamic stress, which is related to the velocities
empirically.

Experiments with a wide class of fluids, ” Newtonian” fluids, obtain that:

7,; ~ linear function of the rate of strain = velocity gradient
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empirical coefficients
(constants for Newtonian fluids)

Note that the shear stress is proportional to the rate of strain.
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For isotropic fluids, this reduces to:
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where the fluid properties are:

e 1 - (coefficient of) dynamic viscosity.

e ) - bulk elasticity, ‘second’ coefficient of viscosity
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For incompressible flow, T = 0. Therefore, for an incompressible, isotropic, Newtonian fluid the viscous

stress 7;; is given as

A 8uz i a’LLj
T = H 8xj 8@

1.8 Navier-Stokes equations

Equations Number of Unknowns Number of

Equations Unknowns

Euler 3 U; 3

continuity 1 P 1

constitutive 6 (symmetry) Tij 6
(Newtonian)

10 10

clogure

Substitute the equation for the stress tensor

Tij = —DPOij
J Poij H 61’]- 8.’131
for a Newtonian fluid into Euler’s equation:
Du; 0Tij
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du; . .
and a%; = 0 due to continuity. Finally,
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where v = £ denoted as the Kinematic viscosity | L?*)T ).

e Navier-Stokes equations for incompressible, Newtonian fluids

Number of Number of
Equations Unknowns
continuity 1 P 1
Navier-Stokes 3 (symmetry) U
4 4
1.9 Boundary Conditions
...) On a solid

1. Kinematic Boundary Conditions: Specifies kinematics (position, velocity,
boundary, velocity of the fluid = velocity of the body. i.e. velocity continuity.

v =14 "no-slip” boundary condition

where ¢ is the fluid velocity at the body and « is the body surface velocity

e U-n=1uU-n no flux — continuous flow
t no slip — finite shear stress

<l



2. Dynamic Boundary Conditions: Specifies dynamics ( pressure, sheer stress, ...)

Stress continuity:

/
P =" + Pinterface
o
Tij = Tij T T, interface

The most common example of interfacial stress is surface tension.

p interface Tij interface

Surface Tension

e Notation: X [Tension force / Length] = [Surface energy / Area].

Surface tension is due to the inter molecular forces attraction forces in the fluid.

At the interface of two fluids, surface tension implies in a pressure jump across the interface. X
gives rise to Ap across an interface.

For a water/air interface: ¥ = 0.07 N/m. This is a function of temperature, impurities etc. . .

2D Example:

cos % - Ap - Rdf = 2¥sin % ~ 22%

N—— ——
~1 ~d0
- 2
Ap =R

Higher curvature implies in higher pressure jump at the interface.



e 3D Example: Compound curvature

where Ry and Ry are the principle radii of curvature.

1.10 Body Forces — Gravity

e Conservative force:

F = —V for some ¢,

where ¢ is the force potential.
- 2 2
]{F-df:()or / F-df:—/ V- di = o(Z1) — o(Z2)
1 1
e A special case of a conservative force is gravity.

ﬁ = —pg/%,

with gravitational potential:

¢ =pgz — F'= Vo =V(-pgz) = —pgk,
where —pgz is the hydrostatic pressure ps = —pgz = —.



Navier-Stokes equation:

Dv -
pD—: = -Vp+ F+ pvV37
= —Vp — Vpgz + pvV?i
=~V (p+ pgz) + prV?*,
but p — ps = pg and ps = —pgz, where p is the total pressure and p,; is the dynamic pressure.
Therefore,
Di
PF;} = —Vpq + prV>*i

e Presence of gravity body force is equivalent to replacing total pressure p by dynamic pressure py in
the Navier-Stokes(N-S) equation.

e Solve the N-S equation with py, then calculate p = pg + ps = ps — pgz.



