13.021 – Marine Hydrodynamics, Fall 2004 Lecture 4

Copyright © 2004 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics Lecture 4

Introduction

Governing Equations so far:

Knowns	Number of Equations		Number of Unknowns		
ρ	Continuity(conservation of	1	v_i 3		
	mass)				
F_i	Euler (conservation of	3	$ au_{ij}$ 6 3 of 9 eliminated by		
	momentum)		Symmoly		
		4	9		

Therefore, some constitutive relationships are needed to relate v_i to τ_{ij} .

1.7 Newtonian Fluid

1. Consider a fluid at rest $(v_i \equiv 0)$. Then according to Pascal's Law:

$$\tau_{ij} = -p_s \delta_{ij} \text{ (Pascal's Law)}$$
$$\tau_{\sim} = \begin{bmatrix} -p_s & 0 & 0\\ 0 & -p_s & 0\\ 0 & 0 & -p_s \end{bmatrix}$$

where p_s is the hydrostatic pressure and δ_{ij} is the Kroenecker delta function, equal to 1 if i = j and 0 if $i \neq j$.

2. Consider a fluid in motion. The fluid stress is defined as:

$$\tau_{ij} = -p\delta_{ij} + \hat{\tau}_{ij}$$

where p is the thermodynamic pressure and $\hat{\tau}_{ij}$ is the dynamic stress, which is related to the velocities empirically.

Experiments with a wide class of fluids, "Newtonian" fluids, obtain that:

$$\hat{\tau}_{ij} \approx \text{ linear function of the} \underbrace{\frac{\text{rate of strain}}{\partial \overline{\partial t} \left(\frac{\partial X}{\partial x} \right)}_{u} \equiv \underbrace{\frac{\partial}{\partial x} \left(\frac{\partial X}{\partial t} \right)}_{u} \equiv \underbrace{\frac{\partial}{\partial u_k}}_{u}$$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{\frac{3^4 = 81}{2} \underbrace{\frac{\partial u_k}{\partial x_m}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}}_{u}$
i.e. $\hat{\tau}_{ij} \approx \underbrace{\alpha_{ijkm}}_{\substack{3^4 = 81 \\ \text{empirical coefficients} \\ (\text{constants for Newtonian fluids})}_{u}$

Note that the shear stress is proportional to the rate of strain.

For isotropic fluids, this reduces to:

$$\hat{\tau_{ij}} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \lambda \underbrace{\left(\frac{\partial u_l}{\partial x_l} \right)}_{\nabla \cdot \vec{u}},$$

where the fluid properties are:

- μ (coefficient of) dynamic viscosity.
- λ bulk elasticity, 'second' coefficient of viscosity

For incompressible flow, $\frac{\partial u_l}{\partial x_l} = 0$. Therefore, for an incompressible, isotropic, Newtonian fluid the viscous stress $\hat{\tau}_{ij}$ is given as

$$\hat{\tau}_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

1.8 Navier-Stokes equations

Equations	Number of	Unknowns Number of			
	Equations	Unknowns			
Euler	3	u_i	3		
continuity	1	p	1		
constitutive	6 (symmetry)	$ au_{ij}$	6		
(Newtonian)					
	10		10		
					
	closure				

Substitute the equation for the stress tensor

$$\tau_{ij} = -p\delta_{ij} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$$

for a Newtonian fluid into Euler's equation:

$$\rho \frac{Du_i}{Dt} = F_i + \frac{\partial \tau_{ij}}{\partial x_j}$$

where

$$\frac{\partial \tau_{ij}}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \mu \underbrace{\frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)}_{\frac{\partial^2 u_i}{\partial x_j \partial x_j} + \frac{\partial}{\partial x_i} \underbrace{\frac{\partial u_j}{\partial x_j}}_{0}}$$

and $\frac{\partial u_j}{\partial x_j} = 0$ due to continuity. Finally,

$$\begin{split} \frac{Du_i}{Dt} &= \frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j} + \frac{1}{\rho} F_i \quad \text{Tensor form} \\ \frac{D\vec{v}}{Dt} &= \frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} + \frac{1}{\rho} \vec{F} \quad \text{Vector form} \end{split}$$

where $\nu \equiv \frac{\mu}{\rho}$ denoted as the **Kinematic viscosity** [L^2/T].

• Navier-Stokes equations for incompressible, Newtonian fluids

Number of			Number of	
Equations			Unknowns	
continuity	1	<i>p</i>	1	
Navier-Stokes	3 (symmetry)	u_i	3	
	4		4	

1.9 Boundary Conditions

1. **Kinematic Boundary Conditions**: Specifies kinematics (position, velocity, ...) On a solid boundary, velocity of the fluid = velocity of the body. i.e. velocity continuity.

 $\vec{v} = \vec{u}$ "no-slip" boundary condition

where \vec{v} is the fluid velocity at the body and \vec{u} is the body surface velocity

- $\vec{v} \cdot \hat{n} = \vec{u} \cdot \hat{n}$ no flux continuous flow
- $\vec{v} \cdot \hat{t} = \vec{u} \cdot \hat{t}$

a alia facita abaan ataan

2. Dynamic Boundary Conditions: Specifies dynamics (pressure, sheer stress, ...)

Stress continuity:

$$p = p' + p_{\text{interface}}$$
$$\tau_{ij} = \tau'_{ij} + \tau_{ij \text{ interface}}$$

The most common example of interfacial stress is surface tension.

Surface Tension

- Notation: Σ [Tension force / Length] \equiv [Surface energy / Area].
- Surface tension is due to the inter molecular forces attraction forces in the fluid.
- At the interface of two fluids, surface tension implies in a pressure jump across the interface. Σ gives rise to Δp across an interface.
- For a water/air interface: $\Sigma = 0.07$ N/m. This is a function of temperature, impurities etc...
- 2D Example:

$$\underbrace{\cos\frac{d\theta}{2}}_{\approx 1} \cdot \Delta p \cdot Rd\theta = 2\Sigma \underbrace{\sin\frac{d\theta}{2}}_{\approx \frac{d\theta}{2}} \approx 2\Sigma \frac{d\theta}{2}$$
$$\therefore \Delta p = \frac{\Sigma}{R}$$

Higher curvature implies in higher pressure jump at the interface.

• 3D Example: Compound curvature

$$\Delta p = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)\Sigma$$

where \mathbf{R}_1 and \mathbf{R}_2 are the principle radii of curvature.

1.10 Body Forces – Gravity

• Conservative force:

$$\vec{F} = -\nabla \varphi$$
 for some φ ,

where φ is the force potential.

$$\oint \vec{F} \cdot d\vec{x} = 0 \text{ or } \int_{1}^{2} \vec{F} \cdot d\vec{x} = -\int_{1}^{2} \nabla \varphi \cdot d\vec{x} = \varphi(\vec{x}_{1}) - \varphi(\vec{x}_{2})$$

• A special case of a conservative force is gravity.

$$\vec{F} = -\rho g \hat{k},$$

with gravitational potential:

$$\varphi = \rho g z \to \vec{F} = -\nabla \varphi = \nabla (-\rho g z) = -\rho g \hat{k},$$

where $-\rho gz$ is the hydrostatic pressure $p_s = -\rho gz = -\varphi$.

Navier-Stokes equation:

$$\rho \frac{D\vec{v}}{Dt} = -\nabla p + \vec{F} + \rho \nu \nabla^2 \vec{v}$$
$$= -\nabla p - \nabla \rho g z + \rho \nu \nabla^2 \vec{v}$$
$$= -\nabla (p + \rho g z) + \rho \nu \nabla^2 \vec{v},$$

but $p - p_s = p_d$ and $p_s = -\rho gz$, where p is the total pressure and p_d is the dynamic pressure. Therefore,

$$\rho \frac{D\vec{v}}{Dt} = -\nabla p_d + \rho \nu \nabla^2 \vec{v}$$

- Presence of gravity body force is equivalent to replacing total pressure p by dynamic pressure p_d in the Navier-Stokes(N-S) equation.
- Solve the N-S equation with p_d , then calculate $p = p_d + p_s = p_d \rho gz$.