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Introduction

Governing Equations so far:

Knowns Number of Equations Number of Unknowns
ρ Continuity(conservation of

mass)
1 vi 3

Fi Euler (conservation of
momentum)

3 τij 6 3 of 9 eliminated by
symmetry

4 9

Therefore, some constitutive relationships are needed to relate vi to τ ij.

1.7 Newtonian Fluid

1. Consider a fluid at rest (vi ≡ 0). Then according to Pascal’s Law:

τij = −psδij (Pascal’s Law)

τ
∼

=



−ps 0 0
0 −ps 0
0 0 −ps




where ps is the hydrostatic pressure and δij is the Kroenecker delta function, equal to 1 if i = j and
0 if i 6= j.

2. Consider a fluid in motion. The fluid stress is defined as:

τij = −pδij + τ̂ij
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where p is the thermodynamic pressure and τ̂ij is the dynamic stress, which is related to the velocities
empirically.

Experiments with a wide class of fluids, ”Newtonian” fluids, obtain that:

τ̂ij ≈ linear function of the rate of strain︷ ︸︸ ︷
∂

∂t

(
∂X

∂x

)
=

∂

∂x

(
∂X

∂t

)

︸ ︷︷ ︸
u

≡ velocity gradient
︷︸︸︷
∂uk

∂xm

i.e. τ̂ij ≈ αijkm︸ ︷︷ ︸
34=81

empirical coefficients
(constants for Newtonian fluids)

∂uk

∂xm

i, j, k, m = 1, 2, 3

Note that the shear stress is proportional to the rate of strain.
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For isotropic fluids, this reduces to:

τ̂ij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ λ

(
∂ul

∂xl

)

︸ ︷︷ ︸
∇·~v

,

where the fluid properties are:

• µ - (coefficient of) dynamic viscosity.

• λ - bulk elasticity, ‘second’ coefficient of viscosity
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For incompressible flow, ∂ul

∂xl
= 0. Therefore, for an incompressible, isotropic, Newtonian fluid the viscous

stress τ̂ij is given as

τ̂ij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)

1.8 Navier-Stokes equations

Equations Number of
Equations

Unknowns Number of
Unknowns

Euler 3 ui 3
continuity 1 p 1

constitutive
(Newtonian)

6 (symmetry) τij 6

10 10

︸ ︷︷ ︸
closure

Substitute the equation for the stress tensor

τij = −pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)

for a Newtonian fluid into Euler’s equation:

ρ
Dui

Dt
= Fi +

∂τij

∂xj

where

∂τij

∂xj

= − ∂p

∂xi

+ µ
∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)

︸ ︷︷ ︸
∂2ui

∂xj∂xj
+ ∂

∂xi

∂uj

∂xj︸︷︷︸
0

and
∂uj

∂xj
= 0 due to continuity. Finally,
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Dui

Dt
=

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+
1

ρ
Fi Tensor form

D~v

Dt
=

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇p + ν∇2~v +

1

ρ
~F Vector form

where ν ≡ µ
ρ

denoted as the Kinematic viscosity [ L2/T ].

• Navier-Stokes equations for incompressible, Newtonian fluids

Number of
Equations

Number of
Unknowns

continuity 1 p 1
Navier-Stokes 3 (symmetry) ui 3

4 4

1.9 Boundary Conditions

1. Kinematic Boundary Conditions: Specifies kinematics (position, velocity, . . . ) On a solid
boundary, velocity of the fluid = velocity of the body. i.e. velocity continuity.

~v = ~u ”no-slip” boundary condition

where ~v is the fluid velocity at the body and ~u is the body surface velocity

• ~v · n̂ = ~u · n̂ no flux – continuous flow

• ~v · t̂ = ~u · t̂ no slip – finite shear stress
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2. Dynamic Boundary Conditions: Specifies dynamics ( pressure, sheer stress, . . . )

Stress continuity:

p = p′ + pinterface
τij = τ ′ij + τ

ij interface

The most common example of interfacial stress is surface tension.

 

'p

p

'ijτ

ijτ

p interface, ijτ interface 

Surface Tension

• Notation: Σ [Tension force / Length] ≡ [Surface energy / Area].

• Surface tension is due to the inter molecular forces attraction forces in the fluid.

• At the interface of two fluids, surface tension implies in a pressure jump across the interface. Σ
gives rise to ∆p across an interface.

• For a water/air interface: Σ = 0.07 N/m. This is a function of temperature, impurities etc. . .

• 2D Example:

cos
dθ

2︸ ︷︷ ︸
≈1

·∆p ·Rdθ = 2Σsin
dθ

2︸ ︷︷ ︸
≈ dθ

2

≈ 2Σdθ
2

∴ ∆p = Σ
R

Higher curvature implies in higher pressure jump at the interface.

5



 

Σ Σ 

p 

p’=p+∆p 

dθ 

R 

dθ/2 

• 3D Example: Compound curvature

∆p =

(
1

R1

+
1

R2

)
Σ

where R1 and R2 are the principle radii of curvature.

1.10 Body Forces – Gravity

• Conservative force:

~F = −∇ϕ for some ϕ,

where ϕ is the force potential.

∮
~F · d~x = 0 or

∫ 2

1

~F · d~x = −
∫ 2

1

∇ϕ · d~x = ϕ(~x1)− ϕ(~x2)

• A special case of a conservative force is gravity.

~F = −ρgk̂,

with gravitational potential:

ϕ = ρgz → ~F = −∇ϕ = ∇(−ρgz) = −ρgk̂,

where −ρgz is the hydrostatic pressure ps = −ρgz = −ϕ.
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Navier-Stokes equation:

ρ
D~v

Dt
= −∇p + ~F + ρν∇2~v

= −∇p−∇ρgz + ρν∇2~v

= −∇ (p + ρgz) + ρν∇2~v,

but p − ps = pd and ps = −ρgz, where p is the total pressure and pd is the dynamic pressure.
Therefore,

ρ
D~v

Dt
= −∇pd + ρν∇2~v

• Presence of gravity body force is equivalent to replacing total pressure p by dynamic pressure pd in
the Navier-Stokes(N-S) equation.

• Solve the N-S equation with pd, then calculate p = pd + ps = pd − ρgz.
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