13.021 - Marine Hydrodynamics, Fall 2004

Lecture 6
Copyright © 2004 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics
 Lecture 6

2.2 Similarity Parameters (from governing equations)

Non-dimensionalize and normalize basic equations by scaling:
Identify characteristic scales for the problem

velocity	U	$\vec{v}=U \vec{v} *$
length	L	$\vec{x}=L \vec{x} *$
time	T	$t=T t *$
pressure	$\mathrm{p}_{o^{-}} \mathrm{p}_{v}$	$p=\left(p_{o}-p_{v}\right) p *$

All ()* quantities are dimensionless and normalized (i.e. $\left.\mathrm{O}(1)\right)$, e.g. $\frac{\partial \vec{v} *}{\partial x *}=O(1)$.
Apply to governing equations: (also internal constitution, boundary conditions)

- Continuity (incompressible flow):

$$
\nabla \cdot \vec{v}=\frac{U}{L} \nabla^{*} \cdot \vec{v}^{*}=0, \quad \nabla^{*} \cdot \vec{v}^{*}=0
$$

- Navier-Stokes:

$$
\begin{aligned}
\frac{\partial \stackrel{\rightharpoonup}{v}}{\partial t}+(\stackrel{\rightharpoonup}{v} \cdot \nabla) \vec{v} & =-\frac{1}{\rho} \nabla p+v \nabla^{2} \stackrel{\rightharpoonup}{v}-g \hat{j} \\
\frac{U}{T} \frac{\partial \vec{v}^{*}}{\partial t^{*}}+\frac{U^{2}}{L}\left(\stackrel{\rightharpoonup}{v}^{*} \cdot \nabla^{*}\right) \stackrel{\rightharpoonup}{v}^{*} & =-\frac{p_{o}-p_{v}}{\rho L} \nabla^{*} p^{*}+\frac{v U}{L^{2}} \nabla^{* 2} \stackrel{\rightharpoonup}{v}^{*}-g \hat{j}
\end{aligned}
$$

divide through by $\frac{U^{2}}{L}$ (order of magnitude of the convective inertia term)

$$
\widetilde{\frac{L}{U T}}\left(\frac{\partial \stackrel{\rightharpoonup}{v}}{\partial t}\right)^{*}+((\stackrel{\rightharpoonup}{v} \cdot \nabla) \vec{v})^{*}=-\frac{\widetilde{p_{o}-p_{v}}}{\rho U^{2}}(\nabla p)^{*}+\widetilde{\frac{\nu}{U L}}\left(\nabla^{2} \stackrel{\rightharpoonup}{v}\right)^{*}-\frac{\widetilde{g L}}{U^{2}} \hat{j}
$$

Since all ()* terms are $\mathrm{O}(1)$, the coefficients () measure the relative importance of each term (as compared to the convective inertia term):

- $\frac{L}{U T}=S=$ Strouhal number $\sim \frac{\text { Eulerian inertia } \frac{\partial \vec{v}}{\partial t}}{\text { convective inertia }(\vec{v} \cdot \nabla) \vec{v}}$
is a measure of transient behavior. For example e.g. if $T \gg \frac{L}{U}, S \ll 1$, ignore $\frac{\partial \vec{v}}{\partial t} \longrightarrow$ assume steady-state.
- $\frac{p_{o}-p_{v}}{\frac{1}{2} \rho U^{2}}=\sigma=$ cavitation number (measures likelihood of cavitation)

If $\sigma \gg 1$, no cavitation. Alternatively, when cavitation is not a concern $p=p_{o} p^{*}$.

- $\frac{p_{o}}{\frac{1}{2} \rho U^{2}}=E_{u}=$ Euler number $\sim \frac{\text { pressure force }}{\text { inertia force }}$.
- $\frac{U L}{\nu}=R_{e}=$ Reynold's number $\sim \frac{\text { inertia force }}{\text { viscous force }}$

If $R_{e} \gg 1$, ignore viscosity.

- $\sqrt{\frac{U^{2}}{g L}}=\frac{U}{\sqrt{g L}}=F_{r}=$ Froude number $\sim\left(\frac{\text { inertia force }}{\text { gravity force }}\right)^{\frac{1}{2}}$
- Kinematic boundary conditions: $\vec{v}=\vec{U}_{b} \longrightarrow \vec{v}^{*}=\vec{U}_{b}^{*}$
- Dynamic boundary conditions:

$$
\begin{aligned}
& p=p_{a}+\Delta p \text { where } \Delta p=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \sum \\
& p^{*}=p_{a}^{*}+\frac{\sum}{\left(p_{o}-p_{v}\right) L}\left(\frac{1}{R_{1}^{*}}+\frac{1}{R_{2}^{*}}\right) \\
& \text { where } \frac{\sum}{\left(p_{o}-p_{v}\right) L}=\frac{2}{\sigma} \frac{\sum / \rho}{U^{2} L}
\end{aligned}
$$

- $\frac{U^{2} L}{\sum / \rho}=W_{e}=$ Weber number $\sim \frac{\text { inertial forces }}{\text { surface tension forces }}$ note: $L \gg R_{o}$ usually

Alternatively, using physical arguments: forces acting on a fluid particle

1. inertial forces \sim mass \times acceleration $\sim\left(\rho L^{3}\right)\left(\frac{U^{2}}{L}\right)=\rho U^{2} L^{2}$
2. viscous forces $\sim \underbrace{\mu \frac{\partial u}{\partial y}}_{\text {shear stress }} \times$ area $\sim\left(\mu \frac{U}{L}\right)\left(L^{2}\right)=\mu U L$
3. gravitational forces \sim mass \times gravity $\sim\left(\rho L^{3}\right) g$
4. pressure forces $\sim\left(p_{o}-p_{v}\right) L^{2}$

For similar streamlines, particles must be acted on by forces whose resultant is in the same direction at geosimilar points. Therefore, forces must be in the same ratios:

$$
\begin{gathered}
\frac{\text { inertia }}{\text { viscous }} \sim \frac{\rho U^{2} L^{2}}{\mu U L}=\frac{U L}{v}=R_{e} \\
\left(\frac{\text { inertia }}{\text { gravity }}\right)^{1 / 2} \sim\left(\frac{\rho U^{2} L^{2}}{\rho g L^{3}}\right)^{1 / 2}=\frac{U}{\sqrt{g L}}=F_{r} \\
\left(\frac{\frac{1}{2} \text { inertia }}{\text { pressure }}\right)^{-1} \sim \frac{\left(p_{o}-p_{v}\right) L^{2}}{\frac{1}{2} \rho U^{2} L^{2}}=\frac{p_{o}-p_{v}}{\frac{1}{2} \rho U^{2}}=\sigma
\end{gathered}
$$

Importance of Various Parameters

- Govern flow similitude of different systems.
- Provide guidance and approximate the complex physical problem.
e.g.

Parameters:

$$
S=\frac{L}{U T}, \sigma=\frac{P_{o}-P_{v}}{\frac{1}{2} \rho U^{2}}, W_{e}=\frac{U^{2} L}{\frac{\Sigma}{\rho}}, F_{r}=\frac{U}{\sqrt{g L}}, R_{e}=\frac{U L}{\nu}
$$

Force coefficient on the foil:

$$
C_{F}=\frac{F}{\frac{1}{2} \rho U^{2} L^{2}}=C_{F}\left(S, \sigma^{-1}, W_{e}^{-1}, F_{r}, R_{e}^{-1}\right)
$$

1. $S=L / U T$, change S with $\sigma, W_{e}, F_{r}, R_{e}$ fixed.

For $S \ll 1$, assume steady-state: $\frac{\partial}{\partial t}=0$
For $S \gg 1$, unsteady effect is dominant. For example:

$$
\left\{\begin{array}{c}
L \approx 10 \mathrm{~m} \\
U \approx 10 \mathrm{~m} / \mathrm{s}
\end{array} \Rightarrow T \approx 1 \mathrm{sec} \text { gives } S \approx 1, \therefore \text { for } T \gg 1 \text { sec assume steady state since } S \ll 1\right.
$$

So, for steady-state problem:

$$
C_{F}=C_{F}\left(\sigma^{-1}, W_{e}^{-1}, F_{r}, R_{e}^{-1}\right)
$$

2. $\sigma=\frac{P_{o}-P_{v}}{\frac{1}{2} \rho U^{2}}\left(\right.$ fixed R_{e}, F_{r} and $\left.W_{e}\right)$.
P_{v} : Vapor pressure
$P_{o} \leq P_{v}$: State of fluid changes from liquid to gas \leftarrow CAVITATION
Mechanism: $\quad P_{o}<P_{v} \rightarrow$ Fluids cannot withstand tensions, the state of fluids changes.

Consequence: (1) Unsteady \rightarrow Vibration of the structures, which may lead to fatigue
(2) Unstable \rightarrow Sudden cavity collapses \rightarrow huge force acting on the structure surface \rightarrow surface erosion.

For $\sigma \ll 1$, there is cavitation, and for $\sigma \gg 1$, there is no cavitation. For example:

$$
\left\{\begin{array}{rl}
p_{0} & \approx 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
p_{v} & \approx 2 \times 10^{3} \mathrm{n} / \mathrm{m}^{2} \\
\rho & \approx 10^{3} \mathrm{~kg} / \mathrm{m}^{3} \\
L & \approx 100 \mathrm{~m} \\
U & \approx 10 \mathrm{~m} / \mathrm{s}
\end{array} \Rightarrow \sigma=2 . \text { To have cavitation we need large } U \text { or } p_{o} \sim p_{v}\right.
$$

Note: p_{v} is the pressure at which the water boils.
For steady non-cavitation flow ($\sigma \gg 1$)

$$
C_{F}=C_{F}\left(W_{e}^{-1}, F_{r}, R_{e}^{-1}\right)
$$

3. $W=\frac{U^{2} L}{\frac{\Sigma}{\rho}}\left(\right.$ fixed R_{e} and $\left.F_{r}\right)$. For example, if $U=1 \mathrm{~m} / \mathrm{s}, \sum=0.07 \mathrm{~N} / \mathrm{m}$ (water-air $20^{\circ} \mathrm{C}$), $\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $L=100 \mathrm{~m}$, we end up with $W_{e} \approx 10^{8}$. If we want $W_{e} \approx 1$, we need $L \approx 10^{-4} \mathrm{~m}$. Then, for $L \gg 10^{-4} \mathrm{~m}, W_{e} \rightarrow \infty$ and $W_{e}^{-1} \rightarrow 0$, so neglect surface tension effect.

For steady, non-cavitation, non-surface tension effect,

$$
C_{F}=C_{F}\left(F_{r}, R_{e}^{-1}\right)
$$

4. $F_{r}=\frac{U}{\sqrt{g L}}$, which measures the effect of gravity.

For problems without dynamic boundary conditions (i.e. if free surface is absent) or if the freesurface is far away or not displaced, gravity effects are irrelevant and F_{r} is not important $\rightarrow \quad F^{*}=$ $C_{F}\left(R_{e}^{-1}\right)$
e.g.
(i)

111111111111111111111

(iii) Large U - No Wave

$$
\begin{aligned}
\mathrm{F}_{\mathrm{r}} & \rightarrow \infty \\
\mathrm{~g} & \rightarrow 0
\end{aligned}
$$

(ii) Low speed $\left(\mathrm{F}_{\mathrm{r}}=0\right)$ (no wave)

$\mathrm{g} \rightarrow \infty$
Free surface \rightarrow Wall
(iv) deeply submerged body

In general $C_{F}=C_{F}\left(F_{r}, R_{e}^{-1}\right)=C_{1}\left(F_{r}\right)+C_{2}\left(R_{e}^{-1}\right) \quad \leftarrow$ Froude's Hypothesis
Dynamic similarity requires:

$$
\begin{aligned}
\left(R_{e}\right)_{1} & =\left(R_{e}\right)_{2}, \\
\left(F_{r}\right)_{1} & =\left(F_{r}\right)_{2} .
\end{aligned}
$$

For two geometrically similar systems $\rightarrow U_{1}=U_{2}, L_{1}=L_{2}$ for the same ν and g.
5. $R_{e}=U L / \nu$.

For steady, no σ, no W_{e}, no gravity effects, $C_{F}=C_{F}\left(R_{e}^{-1}\right)$

$$
\begin{aligned}
& \quad R_{e} \ll 1 \text {, Stokes flow (creeping flow) } \\
& R_{e}<\left(R_{e}\right)_{c r} \text {, Laminar flow } \\
& R_{e}>\left(R_{e}\right)_{c r} \text {, Turbulent flow } \\
& \quad R_{e} \rightarrow \infty \text {, Ideal flow }
\end{aligned}
$$

For example:

$$
\left\{\begin{array}{c}
U=10 \mathrm{~m} / \mathrm{s} \\
L=10 \mathrm{~m} \\
\nu=10^{-6} \mathrm{~m}^{2} / \mathrm{sec}
\end{array} \Rightarrow R_{e}=10^{8} \text { or } R_{e}^{-1}=10^{-8}\right.
$$

For steady, no σ, no W_{e}, no gravity effect and ideal fluid:

$$
C_{F}=C_{F}(0,0,0,0,0)=\text { constant }=0
$$

\rightarrow D'Alembert's Paradox: No drag force on moving body.

