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2.2 Similarity Parameters (from governing equations)

Non-dimensionalize and normalize basic equations by scaling:

Identify characteristic scales for the problem

velocity U
⇀
v = U

⇀
v∗

length L
⇀
x = L

⇀
x∗

time T t = Tt∗
pressure po- pv p = (po − pv)p∗

All ()* quantities are dimensionless and normalized (i.e. O(1)), e.g. ∂
⇀
v ∗

∂x∗ = O(1).
Apply to governing equations: (also internal constitution, boundary conditions)

• Continuity (incompressible flow):

∇ · ⇀
v =

U

L
∇∗ · ⇀

v
∗

= 0, ∇∗ · ⇀
v
∗

= 0

• Navier-Stokes:

∂
⇀
v

∂t
+

(
⇀
v · ∇)

⇀
v = −1

ρ
∇p + υ∇2⇀

v − gĵ

U

T

∂
⇀
v
∗

∂t∗
+

U2

L

(
⇀
v
∗ · ∇∗

)
⇀
v
∗

= −po − pv

ρL
∇∗p∗ +

υU

L2
∇∗2⇀

v
∗ − gĵ

divide through by U2

L
(order of magnitude of the convective inertia term)

L̃

UT

(
∂

⇀
v

∂t

)∗
+

((
⇀
v · ∇)

⇀
v
)∗

= − p̃o − pv

ρU2
(∇p)∗ +

ν̃

UL

(∇2⇀
v
)∗ − g̃L

U2
ĵ
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Since all ()* terms are O(1), the coefficients ˜( ) measure the relative importance of each term (as
compared to the convective inertia term):

• L
UT

= S = Strouhal number ∼ Eulerian inertia ∂
⇀
v

∂t

convective inertia (
⇀
v ·∇)

⇀
v

is a measure of transient behavior. For example e.g. if T >> L
U
, S << 1, ignore ∂

⇀
v

∂t
−→ assume

steady-state.

• po−pv
1
2
ρU2 = σ = cavitation number (measures likelihood of cavitation)

If σ >> 1, no cavitation. Alternatively, when cavitation is not a concern p = pop
∗.

• po
1
2
ρU2 = Eu = Euler number ∼ pressure force

inertia force
.

• UL
ν

= Re = Reynold’s number ∼ inertia force
viscous force

If Re >> 1, ignore viscosity.

•
√

U2

gL
= U√

gL
= Fr = Froude number ∼

(
inertia force
gravity force

) 1
2

– Kinematic boundary conditions:
⇀
v =

⇀

U b −→ ⇀
v
∗

=
⇀

U
∗
b

– Dynamic boundary conditions:

p = pa + ∆p where ∆p =

(
1

R1

+
1

R2

) ∑

p∗ = p∗a +

∑
(po − pv) L

(
1

R∗
1

+
1

R∗
2

)

where

∑
(po − pv) L

=
2

σ

∑
/ρ

U2L

• U2L∑
/ρ

= We = Weber number ∼ inertial forces
surface tension forces

note: L >> Ro usually

Alternatively, using physical arguments: forces acting on a fluid particle

1. inertial forces ∼ mass × acceleration ∼ (ρL3)
(

U2

L

)
= ρU2L2
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2. viscous forces ∼ µ
∂u

∂y︸︷︷︸
shear stress

× area ∼ (
µU

L

)
(L2) = µUL

3. gravitational forces ∼ mass × gravity ∼ (ρL3)g

4. pressure forces ∼ (po − pv)L
2

For similar streamlines, particles must be acted on by forces whose resultant is in the same direction at
geosimilar points. Therefore, forces must be in the same ratios:

inertia

viscous
∼ ρU2L2

µUL
=

UL

υ
= Re

(
inertia

gravity

)1/2

∼
(

ρU2L2

ρgL3

)1/2

=
U√
gL

= Fr

( 1
2
inertia

pressure

)−1

∼ (po − pv)L
2

1
2
ρU2L2

=
po − pv

1
2
ρU2

= σ

Importance of Various Parameters

• Govern flow similitude of different systems.

• Provide guidance and approximate the complex physical problem.

e.g.

 

L 

g U 
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Parameters:

S =
L

UT
, σ =

Po − Pv

1
2
ρU2

,We =
U2L∑

ρ

, Fr =
U√
gL

,Re =
UL

ν

Force coefficient on the foil:

CF =
F

1
2
ρU2L2

= CF

(
S, σ−1,W−1

e , Fr, R
−1
e

)

1. S = L/UT , change S with σ, We, Fr, Re fixed.

Steady-State

S-1 = UT / L 

transientCF

Exact position of the cut 
depends on the problem and 
the quantities of interest.

S~O(1)

Steady-State

S-1 = UT / L 

transientCF

Exact position of the cut 
depends on the problem and 
the quantities of interest.

S~O(1)

For S << 1, assume steady-state: ∂
∂t

= 0
For S >> 1, unsteady effect is dominant. For example:

{
L ≈ 10m

U ≈ 10m/s
⇒ T ≈ 1 sec gives S ≈ 1,∴ for T >> 1sec assume steady state since S << 1
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So, for steady-state problem:
CF = CF

(
σ−1, W−1

e , Fr, R
−1
e

)

2. σ = Po−Pv
1
2
ρU2 (fixed Re, Fr and We).

Pv: Vapor pressure
Po ≤ Pv: State of fluid changes from liquid to gas ← CAVITATION

Mechanism: Po < Pv → Fluids cannot withstand tensions, the state
of fluids changes.

Consequence: (1) Unsteady → Vibration of the structures, which may
lead to fatigue
(2) Unstable → Sudden cavity collapses → huge force
acting on the structure surface → surface erosion.

Strong
cavitation No cavitation

σ

CF

Strong
cavitation No cavitation

σ

CF

Strong
cavitation No cavitation

σ

CF

σinception

For σ << 1, there is cavitation, and for σ >> 1, there is no cavitation. For example:
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



p0 ≈ 105N/m2

pv ≈ 2× 103n/m2

ρ ≈ 103kg/m3

L ≈ 100m
U ≈ 10m/s

⇒ σ = 2. To have cavitation we need large U or po ∼ pv

Note: pv is the pressure at which the water boils.

For steady non-cavitation flow ( σ >> 1)

CF = CF

(
W−1

e , Fr, R
−1
e

)

3. W = U2L
Σ
ρ

(fixed Re and Fr). For example, if U = 1m/s,
∑

= 0.07N/m(water-air 20oC), ρ=103kg/m3

and L = 100 m, we end up with We ≈ 108. If we want We ≈ 1, we need L ≈ 10−4 m. Then, for
L >> 10−4 m, We →∞ and W−1

e → 0, so neglect surface tension effect.

For steady, non-cavitation, non-surface tension effect,

CF = CF

(
Fr, R

−1
e

)

4. Fr = U√
gL

, which measures the effect of gravity.

For problems without dynamic boundary conditions (i.e. if free surface is absent) or if the free-
surface is far away or not displaced, gravity effects are irrelevant and Fr is not important → F ∗ =
CF (R−1

e )

e.g.

6



In general CF = CF (Fr, R
−1
e ) = C1 (Fr) + C2 (R−1

e ) ← Froude’s Hypothesis

Dynamic similarity requires:

(Re)1 = (Re)2,

(Fr)1 = (Fr)2.

For two geometrically similar systems → U1 = U2, L1 = L2 for the same ν and g.

5. Re = UL/ν.

For steady, no σ, no We, no gravity effects, CF = CF (R−1
e )
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Re

CF Sphere

Plate

(Re)cr
Re

CF Sphere

Plate

(Re)crLaminar Turbulent

Transition

Re << 1, Stokes flow (creeping flow)

Re < (Re)cr, Laminar flow

Re > (Re)cr, Turbulent flow

Re →∞, Ideal flow

For example:





U = 10m/s
L = 10m

ν = 10−6m2/sec
⇒ Re = 108 or R−1

e = 10−8

For steady, no σ, no We, no gravity effect and ideal fluid:

CF = CF (0, 0, 0, 0, 0) = constant = 0

→D’Alembert’s Paradox: No drag force on moving body.
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