\qquad

Problem Set 1a: Introduction

Assigned: Thursday 09/09/04

Exercise 1.1:

Please, fill out the survey.
To download the survey, go to: http://mit.edu/13.021/www/assign.html \rightarrow "Survey".
Grading: The following survey is part of Problem Set 1a and will receive either 0 or 1 credit. If reasonable effort is demonstrated full credit (i.e. 1) will be assigned.

Exercise 1.2:

Purpose: This exercise is intended to introduce you to the visualization of fluid flows.
Instructions: Watch the first 15 min of the film "Flow Visualization". To watch the film either:

1. Download it from: http://web.mit.edu/13.021/www/assign.html \rightarrow "Flow Visualization".
2. Borrow a copy from the TA; available in CD's and DVD's.
3. Watch it at the Barker Engineering Library. Call number: QC151.F5.

Assignment: Describe in a short paragraph the concepts of: pathline, streakline and streamline, as you understand them. Provide one example for each case.

Exercise 1.3:

Purpose: This exercise is intended to refresh your calculus and vector calculus background. Suggested References: F.B. Hildebrand, "Advanced Calculus for Applications", Prentice Hall, $2^{\text {nd }}$ edition.

1. Taylor's Series Expansion, 1D: Let f be a real function of x , where $\mathrm{x} \in \mathfrak{R}$. Complete the following expression:
$f(x+d x)=f(x)+$
2. Apply the previous formula to evaluate the following - without using a calculator:

- $e^{0.01} \cong$

3. Notation: Expand the following expression, where $k=1,2$:

$$
\sum_{n=0}^{3} a_{n} b_{k} x^{n}=
$$

4. A scalar has magnitude and direction: (circle the right answer and comment if necessary)

- True
- False
- Only under the assumption that \qquad

5. Assume that $f(x, y)=\frac{\ln (x \cdot y)}{x}$. Then

- $\frac{\partial}{\partial x} f=$
- $\frac{\partial}{\partial y} f=$
- $\vec{\nabla} f=$

6. Evaluate $\int_{-\pi}^{\pi} x \cos (x) d x$

Exercise 1.4:

Supplemental Problems (http://mit.edu/13.021/www/supp notes.html): C1, C2, C3, C6, C10, C11 (a), Ba3

