% TLP HydroDYNAMIC response Analysis % Meg Brogan and katie Wasserman, Revision 1 : 4/25/03 % Constants g=32.17; % gravity ft/s^2 ro=1.99; % density slugs/ft^3 E_steel=4.177e9; % Youngs MOdulus of Steel lb/ft^2 = 20e10 Pa nu=35; % Specific Volume ft^3/ton % Basic Vessel Parameters c_m=1; T=85; % Draft of Vessel ft B_hull=245; % breadth of hull ft l=2900; a=1; d_cais=66.5; % Diameter of Caisson ft l_cais=166; % Full length of Caisson ft d_tend=2.667; % diameter of tendons, 32in t_tend=.10412; % wall thickness of tendons, 1.25in l_tend=2900; % length of tendons ft n=12; % number of tendons w_pont=35.5; % width of ponttons ft h_pont=23; % hight of pontoons ft b_pont=B_hull-d_cais; % breadth of pontoon ft b=(B_hull/2)-(d_cais/2); % Frequency Range w=(0.001:.001:2); k=w.*w./g; % Weights W_top=20502; % total topside weight tons (revised #) W_hull=12054; % hull weight tons (revised #) W_tend=7500; % total weight of all 12 tendons tons Wtot=W_top+W_hull+0.5*W_tend; % Total weight of the vessel Wtot_marg=1.15*Wtot % Total weight of the vessel w/ a 15% margin for error m= Wtot*2200/g; % per MIKE T only half the tendon weight is used in these calcs; the 2200 is to get lb from tons % Displacement, Weight and Tension Determinations % Caissons d_sub=T; % submerged depth of caissons ft A_cais=pi*((d_cais^2)/4); % waterplane area per caisson ft^2 V_cais=A_cais*d_sub; % submerged volume per caisson ft^3 Vt_cais=4*V_cais ; % total submerged volume of caissons ft^3 disp_cais=Vt_cais/nu % Total displacement of caisons % Pontoons V_pont=b_pont*w_pont*h_pont; Vt_pont=4*V_pont; disp_pont=Vt_pont/nu % Total displacement of pontoons % Tendons A_tend=pi*(d_tend^2-(d_tend-2*t_tend)^2)/4; %cross sectional area of the tendons V_tend=l_tend*A_tend; Vt_tend=12*V_tend; disp_tend=Vt_tend/nu % total displacement of tendons % Area of the Waterplane Awp=4*A_cais; % TOTAL HULL DISPLACEMENT, BOUYANCY disp_total=disp_cais+disp_pont+disp_tend % tons B_tot=disp_total-Wtot_marg % Total Bouyant force upwards disp minus weight with fudge factor T_tend=B_tot/n % Tensions in each tendon is B over # of tendons T_tend_lb=T_tend*2200 % Tendon Tension in pounds %Mass determinations m= (W_top+W_hull+0.5*W_tend)*2200/g; % per MIKE T only half the tendon weight is used in these calcs; the 2200 is to get lb from tons ma_c=0.5*(4/3)*pi*(d_cais/2)^3*ro*4; ma_p=4*ro*V_pont; ma_t=ma_c+ma_p; % Total added mass of the pontoon and caisson % FORCES ON THE PLATFORM! w_nn=sqrt((T_tend*l)/((m+ma_t)*l^2)); Fwx_o=-4*(1+c_m)*(pi/4)*ro*d_cais^2*a.*w.^2.*((1-exp(-k.*T_tend))./k).*cos(k*b); %non time dependant piece %EOM - (m+ma)l^2*theta_2dot+T*l*theta=Fwx_o*sin(wt)*l theta_o=(Fwx_o*l)./((-(m+ma_t)*l^2*w.^2)+T_tend*l); H_w=theta_o./a; H_w; plot(w, abs(H_w)); grid on; ylim([0 0.003]); xlabel('w'); ylabel('H_w'); % Transfer function of vessel, theta out from w in % Sea State Description zeta=5; % zeta is the significant wave height- H1/3, in m w_n=.65; % Rad/sec i=w./w_n; %x = (w.^5); x1 = exp(-1.25 .* (w_n./w).^4); S_w= (1.25/4) * zeta^2 * (w_n./w).^4 .* (1./w) .* x1; figure; subplot(2,2,1); plot(w, S_w); grid on; ylabel('S(w)'); xlabel('w'); subplot(2,2,2); plot(i,S_w); grid on; ylabel('S(w)'); xlabel('w/w_n'); % Bretschneider Spectrum % Integration of Vessel Transfer function with input S S_theta=S_w.*(abs(H_w).^2); subplot(2,2,3); plot(w, S_theta); grid on; xlabel('w'); ylabel('S(theta)'); subplot(2,2,4); plot(i,S_theta); grid on; xlabel('w/w_n'); ylabel('S(theta)'); rmssqr=trapz(w, S_theta); Sw_int=trapz(w, S_w) rms=sqrt(rmssqr); theta_sig=4*rms p=theta_sig*2900